1.0ln(1)lim1cosxxxx.分析当0x时,2ln(1)~xxx,21cos~2xx,利用等价无穷小代换可求出极限解2200ln(1)limlim21cos2xxxxxxx2.cos320lim11xxeex.分析先变形coscos1cos(1)xxxeeee,21cos(1)~1cos~2xxex,23211~3xx,再利用等价代换求其极限解2coscos1cos1cos23332220000(1)(1)32limlimlimlim21111113xxxxxxxxxeeeeeeeexxxx.3.求301tan1sinlimxxxx.分析分子有理化后等价无穷小代换求极限.解33001tan1sintansinlimlim(1tan1sin)xxxxxxxxxx33001sin(1)sin(1cos)coslimlim(1tan1sin)(1tan1sin)cosxxxxxxxxxxxxx230112lim4(1tan1sin)cosxxxxxxx.4.求极限.分析该极限为型,先取对数,再使用洛必达法则.11lnlim(1)xxxe00解5.求极限.分析将变形为,将分子分母中的,展开,再求极限.解.6.计算.分析将分子中的函数,展开到相互抵消剩下第一项加上该项的高阶无穷小,再求极限.解从而7.设函数2()12xxnxfxeeen,其中n为正整数,求(0)f.分析(0)0f,0x时,1~xex,所以用导数定义求(0)f简单.解210012()(0)(0)limlim11!0xxnxnxxeeenfxffnxx,所以选(A).8.设(1)(),(0)(,0)fxafxfbab,求(1)f.1211111ln111limlimln(1)11lim1ln1lim(1)xxxxxxxxxxexxeeexxexeeeee011limcotxxxx011limcotxxxx30sincoslimxxxxxsinxcosx323233000()1()3!2!11sincoslimcotlimlimxxxxxxoxxoxxxxxxxxx333011()()12!3!lim3xxoxx403cos2lim2xxexxcosx2xe2xe),(!211442xoxxxcos),(!4!21442xoxx3cos22xex),(!412!2144xox403cos2lim2xxexx4440)(127limxxoxx.127分析抽象函数求导数必须用导数的定义式.解000(1)(1)()(0)()(0)(1)limlimlim(0)xxxfxfafxaffxffaafabxxx.9.设2(1)(1)()lim1nxnxnxeaxbfxe,问a与b为何值时,()fx可导,并求()fx.分析由连续及左右导数的定义即可得到答案.解:1x时,(1)limnxne;1x时,(1)lim0nxne;2,11(),12,1xxabfxxaxbx.由1x处连续性得:11lim()lim()11xxfxfxab.由1x处可导性得:(1)(1)ff,111(1)2(1)limlim11xxabaxbaxbffaxx,21(1)(1)lim21xxffx,故2a.那么2a,1b.于是2,1()1,121,1xxfxxxx,2,1()2,1xxfxx.10.曲线2yx与曲线ln(0)yaxa相切,则a().(A)4e(B)3e(C)2e(D)e分析曲线2yx与曲线ln(0)yaxa相切,则它们有共同的切点及斜率,从而解出a解因与相切,故.2xy)0(lnaxay212axxax在上,时,.在上,时,.lnln1e2e22222aaaaaa,所以选择(C)2xy2ax2ay)0(lnaxay2ax2lnaay2ln21aa