2019-2020学年高中数学 第1章 导数及其应用 1.3.3 函数的最大(小)值与导数学案 新人

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1.3.3函数的最大(小)值与导数学习目标核心素养1.理解函数的最值的概念.(难点)2.了解函数的最值与极值的区别与联系.(易混点)3.会用导数求在给定区间上函数的最值.(重点)1.通过函数最大(小)值存在性的学习,体现直观想象核心素养.2.借助函数最值的求解问题,提升学生的数学运算的核心素养.1.函数的最大(小)值的存在性一般地,如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值与最小值.思考:函数的极值与最值的区别是什么?[提示]函数的最大值和最小值是一个整体性概念,最大值必须是整个区间内所有函数值中的最大值;最小值必须是整个区间内所有函数值中的最小值.函数的最大值、最小值是比较整个定义区间的函数值得出的,函数的极值是比较极值点附近的函数值得出的,函数的极值可以有多个,但最值只能有一个;极值只能在区间内取得,最值则可以在端点取得;有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.当连续函数f(x)在开区间(a,b)内只有一个导数为零的点时,若在这一点处f(x)有极大值(或极小值),则可以判定f(x)在该点处取得最大值(或最小值),这里(a,b)也可以是无穷区间.2.求函数f(x)在闭区间[a,b]上的最值的步骤(1)求函数y=f(x)在(a,b)内的极值;(2)将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个就是最大值,最小的一个就是最小值.1.函数f(x)=2x-cosx在(-∞,+∞)上()A.无最值B.有极值C.有最大值D.有最小值A[f′(x)=2+sinx0恒成立,所以f(x)在(-∞,+∞)上单调递增,无极值,也无最值.]2.函数f(x)=xex在区间[2,4]上的最小值为()A.0B.1eC.4e4D.2e2C[f′(x)=ex-xexex2=1-xex,当x∈[2,4]时,f′(x)<0,即函数f(x)在区间[2,4]上是单调递减函数,故当x=4时,函数f(x)有最小值4e4.]3.已知函数f(x)=-x3+3x2+m(x∈[-2,2]),f(x)的最小值为1,则m=________.1[f′(x)=-3x2+6x,x∈[-2,2].令f′(x)=0,得x=0,或x=2,当x∈(-2,0)时,f′(x)<0,当x∈(0,2)时,f′(x)>0,∴当x=0时,f(x)有极小值,也是最小值.∴f(0)=m=1.]求函数的最值角度1不含参数的函数最值【例1】求下列各函数的最值.(1)f(x)=3x3-9x+5,x∈[-2,2];(2)f(x)=sin2x-x,x∈-π2,π2.[解](1)f′(x)=9x2-9=9(x+1)(x-1),令f′(x)=0得x=-1或x=1.当x变化时,f′(x),f(x)变化状态如下表:x-2(-2,-1)-1(-1,1)1(1,2)2f′(x)+0-0+f(x)-1↗11↘-1↗11从表中可以看出,当x=-2时或x=1时,函数f(x)取得最小值-1.当x=-1或x=2时,函数f(x)取得最大值11.(2)f′(x)=2cos2x-1,令f′(x)=0,得cos2x=12,又∵x∈-π2,π2,∴2x∈[-π,π].∴2x=±π3.∴x=±π6.∴函数f(x)在-π2,π2上的两个极值分别为fπ6=32-π6,f-π6=-32+π6.又fπ2=-π2,f-π2=π2.比较以上函数值可得f(x)max=π2,f(x)min=-π2.角度2含参数的函数最值【例2】a为常数,求函数f(x)=-x3+3ax(0≤x≤1)的最大值.[解]f′(x)=-3x2+3a=-3(x2-a).若a≤0,则f′(x)≤0,函数f(x)单调递减,所以当x=0时,有最大值f(0)=0.若a>0,则令f′(x)=0,解得x=±a.∵x∈[0,1],则只考虑x=a的情况.(1)若0<a<1,即0<a<1,则当x=a时,f(x)有最大值f(a)=2aa.(如下表所示)x0(0,a)a(a,1)1f′(x)+0-f(x)0↗2aa↘3a-1(2)若a≥1,即a≥1时,则当0≤x≤1时,f′(x)≥0,函数f(x)在[0,1]上单调递增,当x=1时,f(x)有最大值f(1)=3a-1.综上可知,当a≤0,x=0时,f(x)有最大值0;当0<a<1,x=a时,f(x)有最大值2aa;当a≥1,x=1时,f(x)有最大值3a-1.1.求解函数在固定区间上的最值,需注意以下几点(1)对函数进行准确求导,并检验f′(x)=0的根是否在给定区间内.(2)研究函数的单调性,正确确定极值和端点函数值.(3)比较极值与端点函数值的大小,确定最值.2.由于参数的取值范围不同会导致函数在所给区间上的单调性的变化,从而导致最值的变化,所以解决含参数的函数最值问题常常需要分类讨论,并结合不等式的知识进行求解.1.已知a是实数,函数f(x)=x2(x-a),求f(x)在区间[0,2]上的最大值.[解]f′(x)=3x2-2ax.令f′(x)=0,解得x1=0,x2=2a3.①当2a3≤0,即a≤0时,f(x)在[0,2]上单调递增,从而f(x)max=f(2)=8-4a.②当2a3≥2,即a≥3时,f(x)在[0,2]上单调递减,从而f(x)max=f(0)=0.③当0<2a3<2,即0<a<3时,f(x)在0,2a3上单调递减,在2a3,2上单调递增,从而f(x)max=8-4a0<a≤2,02<a<3,综上所述,f(x)max=8-4aa≤2,0a>2.已知函数的最值求参数【例3】已知函数f(x)=ax3-6ax2+b,x∈[-1,2]的最大值为3,最小值为-29,求a,b的值.[解]由题设知a≠0,否则f(x)=b为常函数,与题设矛盾.求导得f′(x)=3ax2-12ax=3ax(x-4),令f′(x)=0,得x1=0,x2=4(舍去).(1)当a0,且x变化时,f′(x),f(x)的变化情况如下表:x-1(-1,0)0(0,2)2f′(x)+0-f(x)-7a+b↗b↘-16a+b由表可知,当x=0时,f(x)取得极大值b,也就是函数在[-1,2]上的最大值,∴f(0)=b=3.又f(-1)=-7a+3,f(2)=-16a+3f(-1),∴f(2)=-16a+3=-29,解得a=2.(2)当a0时,同理可得,当x=0时,f(x)取得极小值b,也就是函数在[-1,2]上的最小值,∴f(0)=b=-29.又f(-1)=-7a-29,f(2)=-16a-29f(-1),∴f(2)=-16a-29=3,解得a=-2.综上可得,a=2,b=3或a=-2,b=-29.已知函数在某区间上的最值求参数的值范围是求函数最值的逆向思维,一般先求导数,利用导数研究函数的单调性及极值点,探索最值点,根据已知最值列方程不等式解决问题.其中注意分类讨论思想的应用.2.若函数f(x)=xx2+a(a0)在[1,+∞)上的最大值为33,则a的值为________.3-1[f′(x)=x2+a-2x2x2+a2=a-x2x2+a2,当xa时,f′(x)0,f(x)单调递减,当-axa时,f′(x)0,f(x)单调递增,当x=a时,f(x)=a2a=33,a=321,不合题意.∴f(x)max=f(1)=11+a=33,a=3-1.]与最值有关的综合问题[探究问题]1.对于函数y=f(x),x∈[a,b],若f(x)≥c或f(x)≤c恒成立,则c满足的条件是什么?[提示]c≤f(x)min或c≥f(x)max.2.对于函数y=f(x),x∈[a,b],若存在x0∈[a,b],使得f(x)≥c或f(x)≤c成立,则c满足的条件是什么?[提示]c≤f(x)max或c≥f(x)min.【例4】设函数f(x)=tx2+2t2x+t-1(x∈R,t0).(1)求f(x)的最小值h(t);(2)若h(t)-2t+m对t∈(0,2)恒成立,求实数m的取值范围.思路探究:(1)利用配方法,即可求出二次函数f(x)的最小值h(t);(2)构造函数g(t)=h(t)-(-2t+m),只需使g(t)在(0,2)上的最大值小于零即可求得m的取值范围.[解](1)∵f(x)=t(x+t)2-t3+t-1(x∈R,t0),∴当x=-t时,f(x)取最小值f(-t)=-t3+t-1,即h(t)=-t3+t-1.(2)令g(t)=h(t)-(-2t+m)=-t3+3t-1-m,由g′(t)=-3t2+3=0,得t=1或t=-1(不合题意,舍去).当t变化时,g′(t),g(t)的变化情况如下表:t(0,1)1(1,2)g′(t)+0-g(t)↗极大值1-m↘∴g(t)在(0,2)内有最大值g(1)=1-m.h(t)-2t+m在(0,2)内恒成立等价于g(t)0在(0,2)内恒成立,即等价于1-m0.∴m的取值范围为(1,+∞).1.(变条件)若将本例(2)的条件改为“存在t∈[0,2],使h(t)-2t+m成立”,则实数m的取值范围如何求解?[解]令g(t)=h(t)-(-2t+m)=-t3+3t-1-m,由g′(t)=-3t2+3=0,得t=1或t=-1(不合题意,舍去).当t变化时,g′(t),g(t)的变化情况如下表:t0(0,1)1(1,2)2g′(t)+0-g(t)-1-m↗极大值1-m↘-3-m∴g(t)在[0,2]上有最小值g(2)=-3-m,存在t∈[0,2],使h(t)-2t+m成立,等价于g(t)的最小值g(2)0.∴-3-m0,∴m-3,所以实数m的取值范围为(-3,+∞).2.(变条件)若将本例(2)的条件改为“对任意的t1,t2∈(0,2),都有h(t1)<-2t2+m”,求实数m的取值范围.[解]∵h(t)=-t3+t-1,t∈(0,2)∴h′(t)=-3t2+1由h′(t)=0得t=33或t=-33(舍)又当0<t<33时,h′(t)>0,当33<t<2时,h′(t)<0.∴当t=33时,h(t)max=-39+33-1=23-99.令φ(t)=-2t+m,t∈(0,2),∴φ(t)min>m-4.由题意可知23-99≤m-4,即m≥239+3=23+279.∴实数m的取值范围为23+279,+∞.分离参数求解不等式恒成立问题的步骤1.求函数在闭区间上的最值,只需比较极值和端点处的函数值即可;若函数在一个开区间内只有一个极值,这个极值就是最值.2.已知最值求参数时,可先确定参数的值,用参数表示最值时,应分类讨论.3.“恒成立”问题可转化为函数最值问题.1.下列结论正确的是()A.若f(x)在[a,b]上有极大值,则极大值一定是[a,b]上的最大值B.若f(x)在[a,b]上有极小值,则极小值一定是[a,b]上的最小值C.若f(x)在[a,b]上有极大值,则极小值一定是x=a和x=b时取得D.若f(x)在[a,b]上连续,则f(x)在[a,b]上存在最大值和最小值D[函数f(x)在[a,b]上的极值不一定是最值,最值也不一定是极值,极值一定不会在端点处取得,而在[a,b]上一定存在最大值和最小值.]2.函数y=x-sinx,x∈π2,π的最大值是()A.π-1B.π2-1C.πD.π+1C[因为y′=1-cosx,当x∈π2,π时,y′0,则函数在区间π2,π上为增函数,所以y的最大值为ymax=π-sinπ=π,故选C.]3.函数f(x)=x3-3x(|x|<1)()A.有最大值,但无最小值B.有最大值,也有最小值C.无最大值,但有最小值D.既无最大值,也无最小值D[f′(x)=3x2-3=3(x+1)(x-1),当x∈(-1,1)时,f′(x)<0,所以f(x)在(-1,1)上是单调递减函数,无最

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功