1EvaluationWarning:ThedocumentwascreatedwithSpire.Docfor.NET.4.3单位圆与正弦函数、余弦函数的基本性质4.4单位圆的对称性与诱导公式课时跟踪检测一、选择题1.sin-316π=()A.32B.-32C.-12D.12解析:sin-316π=-sin316π=-sin5π+π6=sinπ6=12.答案:D2.sin(π-2)-cosπ2-2化简的结果为()A.0B.1C.2sin2D.-2sin2解析:原式=sin2-sin2=0.答案:A3.如果A、B、C为△ABC的三个内角,则sinB+C2=()A.-cosA2B.sinA2C.-sinA2D.cosA2解析:sinB+C2=sinπ-A2=sinπ2-A2=cosA2.答案:D4.若cos(π+α)=-13,那么sin3π2-α=()A.-13B.13C.232D.-2322解析:∵cos(π+α)=-cosα=-13,∴cosα=13,∴sin32π-α=-cosα=-13.答案:A5.若f(cosx)=cos2x,则f(sin75°)=()A.12B.-12C.32D.-32解析:f(sin75°)=f(cos15°)=cos30°=32.答案:C6.设f(x)=sinπx3,x≤2017,fx-3,x2017,则f(2018)的值为()A.12B.-12C.32D.-32解析:由题意得f(2018)=f(2015)=sin2015π3=sin671π+2π3=-sin2π3=-32.答案:D二、填空题7.已知:sin(π+α)=-13,则cos52π+α=________.解析:∵cos52π+α=cosπ2+α=-sinα,又∵sin(π+α)=-sinα=-13.∴cos52π+α=-13.答案:-138.(2017·北京卷)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终3边关于y轴对称.若sinα=13,则sinβ=________.解析:由题意知,角α与角β的正弦值相等,又sinα=13,∴sinβ=13.答案:139.下列三角函数:①sinnπ+4π3;②cos2nπ+π6;③sin2nπ+π3;④cos2n+1π-π6;⑤sin2n+1π-π3.其中n∈Z.其中函数值与sinπ3相同的是________.解析:sinnπ+4π3=±sinπ3;cos2nπ+π6=cosπ6=sinπ3;sin2nπ+π3=sinπ3;cos2n+1π-π6=-cosπ6=-sinπ3;sin2n+1π-π3=sinπ3,∴函数值与sinπ3相同的是②③⑤.答案:②③⑤三、解答题10.已知cos(π+θ)=45,求:cosπ+θcosθ[cosπ-θ-1]+cosθ-2πcosθcosπ-θ+cosθ-2π的值.解:由cos(π+θ)=45得cosθ=-45.原式=-cosθcosθ-cosθ-1+cosθcosθ-cosθ+cosθ=11+cosθ+11-cosθ=21-cos2θ4=21--452=509.11.化简求值:(1)cos315°+sin(-30°)+sin225°+cos480°;(2)已知cosπ6-α=33,求cos5π6+α-sinα+π3的值.解:(1)cos315°+sin(-30°)+sin225°+cos480°=cos45°-sin30°-sin45°-cos60°=22-12-22-12=-1.(2)cos5π6+α=cosπ-π6-α=-cosπ6-α=-33,sinα+π3=sinπ2-π6-α=cosπ6-α=33,∴原式=-33-33=-233.12.已知α是第四象限角,且f(α)=sinπ-αcos2π-αcosπ2-αsin-π-αcos2π+α.(1)若cosα-3π2=15,求f(α)的值;(2)若α=-1860°,求f(α)的值.解:f(α)=sinπ-αcos2π-αcosπ2-αsin-π-αcos2π+α=sinαcosα-sinαsinπ+αcosα=1sinα.(1)∵cosα-3π2=15,∴cosα-3π2+2π=15,∴cosπ2+α=15,∴sinα=-15,∴f(α)=1sinα=-5.(2)当α=-1860°时,f(α)=1sinα=1sin-1860°=1-sin1860°5=1-sin5×360°+60°=-1sin60°=-233.13.已知sin(α+β)=1,求证:sin(2α+β)=sinβ.证明:∵sin(α+β)=1,∴α+β=π2+2kπ,k∈Z,2(α+β)=π+4kπ,而sin(2α+β)=sin[2(α+β)-β]=sin(π+4kπ-β)=sin(π-β)=sinβ,∴原等式成立.