1《二分之一》“把一个圆分成两份,每一份一定是它的1/2吗?”在学习1/2时,这个问题搅起了课堂的波澜。每个同学经过独立思考都纷纷发表了自己的意见,有的同意,有的不同意,无形之中就形成了两大阵营。正方、反方分别选出两名代表站在台前,一场唇枪舌战即将开始。吴老师顺手递给一边一张圆纸片,宣布:“同意不同意都要提出问题,如果能问得对方心服口服,同意了你的观点,就是胜利者。这张纸可以折,可以撕。下面的同学两人一组,先讨论一下。”讨论过后,同学们把目光集中到讲台前,吴老师对座位上的学生说:“我们请正方和反方的代表发表自己的意见,可以吗?我们静静的听,然后还可以发表自己的意见,看那位同学最会倾听别人的发言。”辩论开始。正方同学把圆从中间对折,问:“这一半不是1/2?既然你们都承认,为什么不给老师画勾?”大有先声夺人之势。反方同学把圆随意撕了一小块下来,问:“这圆是不是两部分?”正方:“是。”反方:“这两半都是圆的1/2吗?”正方:“不是。”反方:“既然不是,为什么你们还认定把一个圆分成两份,每一份都一定是1/2呢?”好一个咄咄逼人的反问。正方仍然不服气:“我们怎么就得到1/2呢?”坐着的同学开始按捺不住了,举手发言。一个说:“这个圆可以折成1/2,也可以不折成1/2。”真是一语中的。另一个说:“如果一个圆平均分成两份,每份是1/2,但这里说分成两份,怎么分都行。”他在“分成两份”上特别加重了语气。理越辩越明,几个回合下来,大家就达成了共识:这句话错就错在“一定”上,如果一定是1/2的话,前面应该加上“平均”这个词。这是对分数本质意义的认识。点评:数学是其他自然学科的皇后,良好的数学素养离不开周密、严谨的思维。当然,这种严谨的思维习惯,不是靠教师的严厉逼出来的,而是要让学生在切身的体验中、在解决问题的活动中慢慢养成。教师所能做的职能是引导。