化工搅拌器设计指导2一、作用1、使物料混合均匀第一节概述2、强化传热、传质使气体在液相中很好地分散使固体粒子(如催化剂)在液相中均匀地悬浮使不相溶的另一液相均匀悬浮或充分乳化强化相间的传质(如吸收等)强化传热31-搅拌器2-罐体3-夹套4-搅拌轴5-压出管6-支座7-人孔8-轴封9-传动装置图9-1搅拌设备结构图二、结构4第二节搅拌器的型式及选型一、常见型式5二、搅拌器的功能提供搅拌过程所需要的能量和适宜的流动状态,以达到搅拌过程的目的。浆叶旋转运动,产生能量,作用于液体,形成流动状态。关键在浆叶,也与其它因素有关,如介质特性,搅拌器的工作环境等。6三、选型搅拌器选型搅拌目的物料粘度搅拌容器容积的大小选用时除满足工艺要求外,还应考虑功耗低、操作费用省,以及制造、维护和检修方便等因素。7表9-1搅拌器型式适用条件表注表中空白为不适或不详,○为适合。搅拌器型式流动状态搅拌目的搅拌容器容积(m3)转速范围(r/min)最高粘度(P)对流循环湍流扩散剪切流低粘度混合高粘度液混合传热反应分散溶解固体悬浮气体吸收结晶传热液相反应涡轮式○○○○○○○○○○○○1~10010~300500桨式○○○○○○○○○○1~20010~30020推进式○○○○○○○○○1~100010~500500折叶开启涡轮式○○○○○○○○1~100010~300500布尔马金式○○○○○○○○1~10010~300500锚式○○○1~1001~1001000螺杆式○○○1~500.5~501000螺带式○○○1~500.5~5010008四、几种常用搅拌器简介桨式、推进式、涡轮式和锚式搅拌器在搅拌反应设备中应用最为广泛,据统计约占搅拌器总数的75~80%。91.桨式搅拌器结构最简单叶片用扁钢制成,焊接或用螺栓固定在轮毂上,叶片数是2、3或4片,叶片形式可分为平直叶式和折叶式两种。图9-3桨式搅拌器10主要应用液—液系中用于防止分离、使罐的温度均一,固—液系中多用于防止固体沉降。主要用于流体的循环,由于在同样排量下,折叶式比平直叶式的功耗少,操作费用低,故轴流桨叶使用较多。也用于高粘流体搅拌,促进流体的上下交换,代替价格高的螺带式叶轮,能获得良好的效果。11桨式搅拌器的转速一般为20~100r/min,最高粘度为20Pa·s。缺点不能用于以保持气体和以细微化为目的的气—液分散操作中。122.推进式搅拌器推进式搅拌器(又称船用推进器)常用于低粘流体中。结构标准推进式搅拌器有三瓣叶片,其螺距与桨直径d相等。它直径较小,d/D=1/4~1/3,叶端速度一般为7~10m/s,最高达15m/s。图9-4推进式搅拌器13搅拌时——流体由桨叶上方吸入,下方以圆筒状螺旋形排出,流体至容器底再沿壁面返至桨叶上方,形成轴向流动。特点——搅拌时流体的湍流程度不高,循环量大,结构简单,制造方便。循环性能好,剪切作用不大,属于循环型搅拌器。14应用粘度低、流量大的场合,用较小的搅拌功率,能获得较好的搅拌效果。主要用于液-液系混合、使温度均匀,在低浓度固-液系中防止淤泥沉降等。改进容器内装挡板、搅拌轴偏心安装、搅拌器倾斜,可防止漩涡形成。153.涡轮式搅拌器涡轮式搅拌器(又称透平式叶轮),是应用较广的一种搅拌器,能有效地完成几乎所有的搅拌操作,并能处理粘度范围很广的流体。图9-5涡轮式搅拌器16应用涡轮式搅拌器有较大的剪切力,可使流体微团分散得很细,适用于低粘度到中等粘度流体的混合、液—液分散、液—固悬浮,以及促进良好的传热、传质和化学反应。174.锚式搅拌器结构简单。适用于粘度在100Pa·s以下的流体搅拌,当流体粘度在10~100Pa·s时,可在锚式桨中间加一横桨叶,即为框式搅拌器,以增加容器中部的混合。图9-6锚式搅拌器18锚式或框式桨叶的混合效果并不理想,只适用于对混合要求不太高的场合。应用由于锚式搅拌器在容器壁附近流速比其它搅拌器大,能得到大的表面传热系数,故常用于传热、晶析操作。常用于搅拌高浓度淤浆和沉降性淤浆。当搅拌粘度大于100Pa·s的流体时,应采用螺带式或螺杆式。19一、搅拌器功率和搅拌器作业功率1、定义搅拌功率搅拌器功率搅拌作业功率第三节搅拌器的功率最理想状态:搅拌器功率=搅拌作业功率搅拌过程进行时需要动力,笼统地称这一动力时叫做搅拌功率。为使搅拌器连续运转所需要的功率称为搅拌器功率。搅拌器使搅拌槽中的液体以最佳方式完成搅拌过程所需要的功率。202、影响搅拌器功率的因素搅拌器的几何参数与运转参数搅拌槽的几何参数搅拌介质的物性参数213、从搅拌作业功率的观点决定搅拌过程的功率液体单位体积的平均搅拌功率的推荐值(表9-2)搅拌过程的种类液体单位体积的平均搅拌功率/(Hp/m3)液体混合0.09固体有机物悬浮0.264~0.396固体有机物溶解0.396~0.528固体无机物溶解1.32乳液聚合(间歇式)1.32~2.64悬浮聚合(间歇式)1.585~1.894气体分散3.96注1Hp=735.499W表9-2不同搅拌种类液体单位体积的平均搅拌功率22按搅拌过程求搅拌功率的算图图9-7由搅拌过程求搅拌功率的算图23③将该点与某一搅拌过程连线,交于搅拌功率线,即可求得该过程的搅拌功率①从液体容积值与液体粘度值连线,交于参考线Ⅰ;②由该点与液体比重连线,并交于参考线Ⅱ上某点;图9-7由搅拌过程求搅拌功率的算图24一、罐体的尺寸确定罐体长径比对搅拌功率的影响第四节搅拌罐结构设计罐体长径比对传热的影响需要较大搅拌功率的,长径比可以选得小些。体积一定时,长径比越大,表面积越大,越利于传热;并且此时传热面距罐体中心近,物料的温度梯度就越大,有利于传热效果。因此,单纯从夹套传热角度考虑,一般希望长径比大一些。1、罐体长径比25物料特性对罐体长径比的要求表9—3几种搅拌罐的长径比种类设备内物料类型长径比一般搅拌罐液-固相、液-液相1~1.3气-液相1~2聚合釜悬浮液、乳化液2.08~3.85发酵罐类发酵液1.7~2.526装料系数初步计算筒体内径确定筒体直径和高度一般取0.6~0.82、搅拌罐装料量VVg34igiDHVD27一、传动装置第五节传动装置及搅拌轴一般包括电动机、减速装置、联轴节及搅拌轴图9-8齿轮减速机图9-9涡轮减速机28二、轴的计算1、轴的强度计算2、轴的刚度计算kpTWd163000100180PJGT29二、轴封机械搅拌反应器轴封主要有两种轴的密封装置填料密封机械密封避免介质通过转轴从搅拌容器内泄漏或外部杂质渗入搅拌容器内。目的:301、填料密封特点:结构简单,制造容易,适用于非腐蚀性和弱腐蚀性介质、密封要求不高、并允许定期维护的搅拌设备。填料密封的结构及工作原理组成:底环、本体、油环、填料、螺柱、压盖及油杯等。31工作原理在压盖压力作用下,装在搅拌轴与填料箱本体之间的填料,对搅拌轴表面产生径向压紧力。填料中含有润滑剂,在对搅拌轴产生径向压紧力的同时,形成一层极薄的液膜,一方面使搅拌轴得到润滑,另一方面阻止设备内流体的逸出或外部流体的渗入,达到密封的目的。32存在问题填料中的润滑剂会在运转中不断消耗,通过设置在填料中间的油环向填料内加油,保持润滑。填料密封不可能绝对不漏。增加压紧力,填料紧压在转动轴上,会加速轴与填料间的磨损,使密封更快失效。在操作过程中应适当调整压盖的压紧力,并需定期更换填料。33图9-10填料密封的结构1—压盖2—双头螺柱3—螺母4—垫圈5—油杯6—油环7—填料8—本体9—底环34填料密封箱的特点b.成型环状填料盘状填料装配时尺寸公差很难保证,填料压紧后不能完全保证每圈都与轴均匀良好接触,受力状态不好,易造成填料密封失效而泄漏。采用具有一定公差的成型环状填料,密封效果可大为改善。填料一般在裁剪、压制成填料环后使用。成型环状填料的形状见图8—34。a.在填料箱的压盖上设置衬套,可提高装配精度,使轴有良好对中,填料压紧时受力均匀,保证填料密封在良好条件下进行工作。35图9-11压制成型填料36当旋转轴线速度大于1m/s时,摩擦热大,填料寿命会降低,轴也易烧坏。措施:提高轴表面硬度和加工精度,提高填料自润滑性能,如在轴表面堆焊硬质;合金或喷涂陶瓷或采用水夹套等。轴表面的粗糙度应控制在0.8-0.2µm。37填料密封的选用b.根据填料的性能选用:当密封要求不高时,选用一般石棉或油浸石棉填料,当密封要求较高时,选用膨体聚四氟乙烯、柔性石墨等填料。各种填料材料的性能不同,按表8-13选用。a.根据设计压力、设计温度及介质腐蚀性选用当介质为非易燃、易爆、有毒的一般物料且压力不高时,按表8-12选用填料密封。38材料公称压力/MPa允许压力范围/MPa(负值指真空)允许温度范围/℃转轴线速度/(m/s)碳钢填料箱常压<0.1<200<10.6-0.03~0.6≤2001.6-0.03~1.6-20~300不锈钢填料箱常压<0.1<200<10.6-0.03~0.6≤2001.6-0.03~1.6-20~300表9-4标准填料箱的允许压力、温度39表9-5填料材料的性能填料名称介质极限温度/0C介质极限压力/MPa线速度/(m/s)适用条件(接触介质)油浸石棉填料4506蒸汽、空气、工业用水、重质石油产品、弱酸液等聚四氟乙烯纤维编结填料250302强酸、强碱、有机溶剂聚四氟乙烯石棉盘根260251酸碱、强腐蚀性溶液、化学试剂等石棉线或石棉线与尼龙线浸渍聚四氟乙烯填料300302弱酸、强碱、各种有机溶剂、液氨、海水、纸浆废液等柔性石墨填料250~300202醋酸、硼酸、柠檬酸、盐酸、硫化氢、乳酸、硝酸、硫酸、硬脂酸、水钠、溴、矿物油料、汽油、二甲苯、四氯化碳等膨体聚四氟乙烯石墨盘根25042强酸、强碱、有机溶液402、机械密封把转轴的密封面从轴向改为径向,通过动环和静环两个端面的相互贴合,并作相对运动达到密封的装置,又称端面密封。泄漏率低,密封性能可靠,功耗小,使用寿命长,在搅拌反应器中得到广泛地应用。定义:特点:41由固定在轴上的动环及弹簧压紧装置、固定在设备上的静环以及辅助密封圈组成。机械密封的结构及工作原理结构421—弹簧;2—动环;3—静环图9-12机械密封结构43釜用机械密封基本结构44图9-13机械密封的基本结构及组成45当转轴旋转时,动环和固定不动的静环紧密接触,并经轴上弹簧压紧力的作用,阻止容器内介质从接触面上泄漏。工作原理动环与轴之间的密封,属静密封,密封件常用“O”形环。A点:图中有四个密封点:46B点:动密封,密封的关键动环和静环作相对旋转运动时的端面密封,属动密封,是机械密封的关键。两个密封端面的平面度和粗糙度要求较高,依靠介质的压力和弹簧力使两端面保持紧密接触,并形成一层极薄的液膜起密封作用。47静环座与设备之间的密封,属静密封。通常设备凸缘做成凹面,静环座做成凸面,中间用垫片密封。C点:静环与静环座之间的密封,属静密封。D点:48密封面上单位面积所受的力称为端面比压。它是动环受介质压力和弹簧力的共同作用下,紧压在静环上引起的,是操作时保持密封所必需的净压力。造成摩擦面发热,摩擦加剧,功率消耗增加,使用寿命缩短端面比压:密封面因压不紧而泄漏,密封失效端面比压过大:端面比压过小:动环和静环之间的摩擦面称为密封面49机械密封分类机械密封分类按密封面负荷平衡情况分为按密封面数目分为单端面双端面平衡型非平衡型一对密封面二对密封面50双端面密封有二个密封面,且可在二密封面之间的空腔中注入中性液体,使其压力略大于介质的操作压力,起到堵封及润滑的双重作用,故密封效果好。但结构复杂,制造、拆装比较困难,需一套封液输送装置,且不便于维修。a.单端面与双端面图8—35所示的单端面密封结构简单、制造容易、维修方便、应用广泛。51b.平衡型与非平衡型根据密封面负荷平衡情况分为平衡型和非平衡型。平衡型与非平衡型是以液体压力负荷面积对端面密封面积的比值大小判别的。