专题18全等三角线中的辅助线做法及常见题型之互补型旋转备战2021中考数学解题方法系统训练

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

专题18:第三章全等三角形中的辅助线的做法及常见题型之互补型旋转一、单选题1.Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论①(BE+CF)=22BC,②AEFABC1SS4,③AEDFS四形边AD·EF,④AD≥EF,⑤AD与EF可能互相平分,其中正确结论的个数是()A.1个B.2个C.3个D.4个二、填空题2.如图,P是等边三角形ABC内一点,将线段BP绕点B逆时针旋转60°得到线段BQ,连接AQ.若PA=4,PB=5,PC=3,则四边形APBQ的面积为_______.3.如图,三个边长均为2的正方形重叠在一起,O1,O2是其中两个正方形的中心,则阴影部分的面积是____.4.如图,在平面直角坐标系xOy中,A,B两点分别在x轴,y轴的正半轴上,且OA=OB,点C在第一象限,OC=3,连接BC,AC,若∠BCA=90°,则BC+AC的值为_________.三、解答题5.如图,在ABC中,120ACB,BCAC,点E在BC上,点D在AB上,CECA,连接DE,180ACBADE,CHAB,垂足为H.证明:23DEADCH.6.在ABC中,90BAC,ABAC,ADBC于点D,(1)如图1,点M,N分别在AD,AB上,且90BMN,当30AMN,2AB时,求线段AM的长;(2)如图2,点E,F分别在AB,AC上,且90EDF,求证:BEAF;(3)如图3,点M在AD的延长线上,点N在AC上,且90BMN,求证:2ABANAM;7.探究问题:(1)方法感悟:如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠BAF=45°,连接EF,求证DE+BF=EF.感悟解题方法,并完成下列填空:将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°,因此,点G,B,F在同一条直线上.∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.∵∠1=∠2,∠1+∠3=45°.即∠GAF=∠________.又AG=AE,AF=AE∴△GAF≌△________.∴_________=EF,故DE+BF=EF.(2)方法迁移:如图②,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.8.如图,△ABC是边长为4的等边三角形,点D是线段BC的中点,∠EDF=120°,把∠EDF绕点D旋转,使∠EDF的两边分别与线段AB、AC交于点E、F.(1)当DF⊥AC时,求证:BE=CF;(2)在旋转过程中,BE+CF是否为定值?若是,求出这个定值;若不是,请说明理由9.如图所示,ABC中,1ABBC,90ABC,把一块含30°角的直角三角板DEF的直角顶点D放在AC的中点上(直角三角板的短直角边为DF,长直角边为DE),将三角板DEF绕D点按逆时针方向旋转.(1)在如图所见中,DE交AB于M,DF交BC于N,证明DMDN;(2)继续旋转至如图所见,延长AB交DE于M,延长BC交DF于N,证明DMDN.10.如图1,四边形ABCD中,BD⊥AD,E为BD上一点,AE=BC,CE⊥BD,CE=ED(1)已知AB=10,AD=6,求CD;(2)如图2,F为AD上一点,AF=DE,连接BF,交BF交AE于G,过G作GH⊥AB于H,∠BGH=75°.求证:BF=22GH+2EG.11.一位同学拿了两块45三角尺MNK,ACB做了一个探究活动:将MNK的直角顶点M放在ACB的斜边AB的中点处,设4ACBC.(1)如图1所示,两三角尺的重叠部分为ACM,则重叠部分的面积为______,周长为______.(2)将如图1所示中的MNK绕顶点M逆时针旋转45,得到如图2所示,此时重叠部分的面积为______,周长为______.(3)如果将MNK绕M旋转到不同于如图1所示和如图2所示的图形,如图3所示,请你猜想此时重叠部分的面积为______.(4)在如图3所示情况下,若1AD,求出重叠部分图形的周长.12.阅读下面材料:小炎遇到这样一个问题:如图1,点E、F分别在正方形ABCD的边BC,CD上,∠EAF=45°,连结EF,则EF=BE+DF,试说明理由.小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中.她先后尝试了翻折、旋转、平移的方法,最后发现线段AB,AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决了这个问题(如图2).参考小炎同学思考问题的方法,解决下列问题:(1)如图3,四边形ABCD中,AB=AD,∠BAD=90°点E,F分别在边BC,CD上,∠EAF=45°.若∠B,∠D都不是直角,则当∠B与∠D满足_关系时,仍有EF=BE+DF;(2)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,若BD=1,EC=2,求DE的长.参考答案1.C【解析】【分析】【详解】解:∵Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∴AD=DC,∠EAD=∠C=45°,∠EDA=∠MDN-∠ADN=90°-∠ADN=∠FDC.∴△EDA≌△FDC(ASA).∴AE=CF.∴BE+CF=BE+AE=AB.在Rt△ABC中,根据勾股定理,得AB=22BC.∴(BE+CF)=22BC.∴结论①正确.设AB=AC=a,AE=b,则AF=BE=a-b.∴22AEFABC1111111SSAEAFABAC=baba=a2b04242288.∴AEFABC1SS4.∴结论②正确.如图,过点E作EI⊥AD于点I,过点F作FG⊥AD于点G,过点F作FH⊥BC于点H,ADEF相交于点O.∵四边形GDHF是矩形,△AEI和△AGF是等腰直角三角形,∴EO≥EI(EF⊥AD时取等于)=FH=GD,OF≥GH(EF⊥AD时取等于)=AG.∴EF=EO+OF≥GD+AG=AD.∴结论④错误.∵△EDA≌△FDC,∴22ADCAEDF11SSADDCADADADEF22四边形.∴结论③错误.又当EF是Rt△ABC中位线时,根据三角形中位线定理知AD与EF互相平分.∴结论⑤正确.综上所述,结论①②⑤正确.故选C.2.25364【解析】【分析】由旋转的性质可得△BPQ是等边三角形,由全等三角形的判定可得△ABQ≌△CBP(SAS),由勾股定理的逆定理可得△APQ是直角三角形,求四边形的面积转化为求两个特殊三角形的面积即可.【详解】解:连接PQ,由旋转的性质可得,BP=BQ,又∵∠PBQ=60°,∴△BPQ是等边三角形,∴PQ=BP,在等边三角形ABC中,∠CBA=60°,AB=BC,∴∠ABQ=60°-∠ABP∠CBP=60°-∠ABP∴∠ABQ=∠CBP在△ABQ与△CBP中BQBPABQCBPABCB,∴△ABQ≌△CBP(SAS),∴AQ=PC,又∵PA=4,PB=5,PC=3,∴PQ=BP=5,PC=AQ=3,在△APQ中,因为2229,16,25AQAPPQ,25=16+9,∴由勾股定理的逆定理可知△APQ是直角三角形,∴2312535346424BPQAPQAPBQSSS四边形,故答案为:25364【点睛】本题主要考查了旋转的性质、全等三角形的判定、勾股定理的逆定理及特殊三角形的面积,解题的关键是作出辅助线,转化为特殊三角形进行求解.3.2【解析】【分析】根据题意作图,连接1OB,1OC,可得△1OBF△1OCG,那么可得阴影部分的面积与正方形面积的关系,同理得出另两个正方形的阴影部分面积与正方形面积的关系,从而得出答案.【详解】解:连接1OB、1OC,如图:1190BOFFOC,1190FOCCOG,11BOFCOG,四边形ABCD是正方形,1145OBFOCG,在△1OBF和△1OCG中111111FOBCOGBOCOFBOGCO△1OBF△1()OCGASA,1O、2O两个正方形阴影部分的面积是14S正方形,同理另外两个正方形阴影部分的面积也是14S正方形,122SS正方形阴影部分.故答案为:2.【点睛】本题主要考查了正方形的性质及全等三角形的证明,把阴影部分进行合理转移是解决本题的难点,难度适中.4.32【解析】【分析】可将△OBC绕着O点顺时针旋转90°,所得的图形与△OAC正好拼成等腰直角三角形BC+AC等于等腰三角形的斜边CD.【详解】解:将△OBC绕O点旋转90°,∵OB=OA∴点B落在A处,点C落在D处且有OD=OC=3,∠COD=90°,∠OAD=∠OBC,在四边形OACB中∵∠BOA=∠BCA=90°,∴∠OBC+∠OAC=180°,∴∠OAD+∠OAC=180°∴C、A、D三点在同一条直线上,∴△OCD为等要直角三角形,根据勾股定理CD2=OC2+OD2即CD2=32+32=18解得CD=32即BC+AC=32.【点睛】本题考查旋转的性质,旋转前后的图形对应边相等,对应角相等.要求两条线段的长,可利用作图的方法将两条线段化成一条线段,再求这条线段的长度即可,本题就是利用旋转的方法做到的,但做本题时需注意,一定要证明C、A、D三点在同一条直线上.本题还有一种化一般为特殊的方法,因为答案一定可考虑CB⊥y轴的情况,此时四边形OACB刚好是正方形,在做选择或填空题时,也可以起到事半功倍的效果.5.见解析【解析】【分析】如图,延长BA到点F,使AFDE,连接CF、CD,根据四边形的内角和和邻补角互补可得CAFCED,进而可根据SAS证明AFCEDC△≌△,可得CFCD,ACFECD,进一步即可求得120FCD,然后利用等腰三角形的性质和解直角三角形的知识即可证得结论.【详解】证明:如图,延长BA到点F,使AFDE,连接CF、CD,180ACBADE,360180180CADCED,180CADCAF,CAFCED,ACEC,AFED,AFCEDC△≌△,CFCD,ACFECD,120FCDACFACDECDACDACB,CFCD,CHDF,1122FHDHDFDEAD,1602HCDFCD,tan3DHHCDCH,3DHCH,223DEADDHCH.【点睛】本题考查了四边形的内角和、全等三角形的判定和性质、等腰三角形的性质和解直角三角形等知识,正确添加辅助线、灵活应用上述知识是解题的关键.6.(1)2323AM;(2)见解析;(3)见解析.【解析】【分析】(1)根据等腰三角形的性质、直角三角形的性质得到AD=BD=DC=2,求出∠MBD=30°,根据勾股定理计算即可;(2)证明△BDE≌△ADF,根据全等三角形的性质证明;(3)过点M作ME∥BC交AB的延长线于E,证明△BME≌△AMN,根据全等三角形的性质得到BE=AN,根据等腰直角三角形的性质、勾股定理证明结论.【详解】(1)解:90BAC,ABAC,ADBC,ADBDDC,45ABCACB,45BADCAD,2AB,2,ADBDDC,30AMN,180903060BMD,30BMD,2BMDM,由勾股定理得,222BMDMBD,即222(2)(2)DMDM

1 / 30
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功