21.3实际问题与一元二次方程(第3课时)用一元二次方程解决几何图形问题1.面积(体积)问题属于几何图形的应用题,解决问题的关键是将不规则图形分割或组合、平移成规则图形,找出未知量与__已知量___的内在联系,根据__面积(体积)___公式列出一元二次方程.2.一个正方形的边长增加了3cm,面积相应增加了39cm2,则原来这个正方形的边长为__5___cm.知识点1:一般图形的面积问题1.一个面积为35m2的矩形苗圃,它的长比宽多2m,则这个苗圃的长为(C)A.5mB.6mC.7mD.8m2.(2014·襄阳)用一条长40cm的绳子围成一个面积为64cm2的长方形.设长方形的长为xcm,则可列方程为(B)A.x(20+x)=64B.x(20-x)=64C.x(40+x)=64D.x(40-x)=643.一个直角三角形的两条直角边相差5cm,面积是7cm2,这两条直角边长分别为__2_cm,7_cm___.4.(2014·湘潭)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25m),现在已备足可以砌50m长的墙的材料,试设计一种砌法,使矩形花园的面积为300m2.解:设AB=xm,则BC=(50-2x)m,根据题意得x(50-2x)=300,解得x1=10,x2=15,当x=10,BC=50-2×10=30>25,故x1=10不合题意,舍去,∴x=15,则可以围成AB为15m,BC为20m的矩形知识点2:边框与通道问题5.如图,在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上花草.若种植花草的面积为540m2,求道路的宽.如果设道路的宽为xm,根据题意,所列方程正确的是(A)A.(20-x)(32-x)=540B.(20-x)(32-x)=100C.(20+x)(32-x)=540D.(20-x)(32+x)=540,第5题图),第6题图)6.(2014·兰州)如图,在一块长为22米,宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米,若设道路宽为x米,则根据题意可列出方程__(22-x)(17-x)=300___.7.如图,某矩形相框长26cm,宽20cm,其四周相框边(图中阴影部分)的宽度相同,都是xcm,若相框内部的面积为280cm2,求相框边的宽度.解:由题意得(26-2x)(20-2x)=280,整理得x2-23x+60=0,解得x1=3,x2=20(不合题意,舍去),则相框边的宽度为3cm8.从一块正方形的木板上锯掉2m宽的长方形木条,剩下的面积是48m2,则原来这块木板的面积是(B)A.100m2B.64m2C.121m2D.144m29.如图,正方形ABCD的边长是1,E,F分别是BC,CD上的点,且△AEF是等边三角形,则BE的长为(A)A.2-3B.2+3C.2+5D.5-2,第9题图),第11题图)10.在一个矩形地毯的四周镶有宽度相同的花边,已知地毯中央的矩形图案长6米、宽3米,整个地毯的面积是40平方米,则花边的宽为__1___米.11.如图,已知点A是一次函数y=x-4图象上的一点,且矩形ABOC的面积等于3,则点A的坐标为__(3,-1)或(1,-3)___.12.如图是一个矩形花园,花园的长为100米,宽为50米,在它的四角各建一个同样大小的正方形观光休息亭,四周建有与观光休息亭等宽的观光大道,其余部分(图中阴影部分)种植的是不同花草.已知种植花草部分的面积为3600平方米,那么花园各角处的正方形观光休息亭的边长为多少米?解:设正方形观光休息亭的边长为x米,依题意得(100-2x)(50-2x)=3600,整理得x2-75x+350=0,解得x1=5,x2=70,∵x2=70>50,不合题意,舍去,∴x=5,即矩形花园各角处的正方形观光休息亭的边长为5米13.小林准备进行如下操作实验:把一根长为40cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于48cm2.”他的说法对吗?请说明理由.解:(1)设其中一个正方形的边长为xcm,则另一个正方形的边长为(10-x)cm,由题意得x2+(10-x)2=58,解得x1=3,x2=7,4×3=12,4×7=28,所以小林应把绳子剪成12cm和28cm的两段(2)假设能围成.由(1)得,x2+(10-x)2=48,化简得x2-10x+26=0,因为Δ=b2-4ac=(-10)2-4×1×26=-4<0,所以此方程没有实数根,所以小峰的说法是对的14.如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果点P,Q分别从点A,B同时出发,那么几秒后,△PBQ的面积等于4cm2?(2)如果点P,Q分别从点A,B同时出发,那么几秒后,PQ的长度等于5cm?(3)在问题(1)中,△PBQ的面积能否等于7cm2?说明理由.解:(1)设x秒后,△PBQ的面积等于4cm2,根据题意得x(5-x)=4,解得x1=1,x2=4.∵当x=4时,2x=8>7,不合题意,舍去,∴x=1(2)设x秒后,PQ的长度等于5cm,根据题意得(5-x)2+(2x)2=25,解得x1=0(舍去),x2=2,∴x=2(3)设x秒后,△PBQ的面积等于7cm2,根据题意得x(5-x)=7,此方程无解,所以不能