1第27章检测题(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.下列四条线段为成比例线段的是(B)A.a=10,b=5,c=4,d=7B.a=1,b=3,c=6,d=2C.a=8,b=5,c=4,d=3D.a=9,b=3,c=3,d=62.(2020·成都)如图,直线l1∥l2∥l3,直线AC和DF被l1,l2,l3所截,AB=5,BC=6,EF=4,则DE的长为(D)A.2B.3C.4D.103第2题图第3题图第5题图第6题图3.如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于(B)A.60mB.40mC.30mD.20m4.(2020·大庆)已知两个直角三角形的三边长分别为3,4,m和6,8,n,且这两个直角三角形不相似,则m+n的值为(A)A.10+7或5+27B.15C.10+7D.15+375.(2020·河北)在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是(A)A.四边形NPMQB.四边形NPMRC.四边形NHMQD.四边形NHMR6.(2020·遵义)如图,△ABO的顶点A在函数y=kx(x>0)的图象上,∠ABO=90°,过AO边的三等分点M,N分别作x轴的平行线交AB于点P,Q.若四边形MNQP的面积为3,则k的值为(D)A.9B.12C.15D.187.(2020·遂宁)如图,在平行四边形ABCD中,∠ABC的平分线交AC于点E,交AD于点F,交CD的延长线于点G,若AF=2FD,则BEEG的值为(C)2A.12B.13C.23D.34第7题图第8题图第9题图第10题图8.(2020·包头)如图,在平面直角坐标系中,直线y=-32x+3与x轴、y轴分别交于点A和点B,C是线段AB上一点.过点C作CD⊥x轴,垂足为D,CE⊥y轴,垂足为E,S△BEC∶S△CDA=4∶1,若双曲线y=kx(x>0)经过点C,则k的值为(A)A.43B.34C.25D.529.(广西中考)如图,AB为⊙O的直径,BC,CD是⊙O的切线,切点分别为点B,D,点E为线段OB上的一个动点,连接OD,CE,DE,已知AB=25,BC=2,当CE+DE的值最小时,则CEDE的值为(A)A.910B.23C.53D.25510.(2020·铜仁)如图,正方形ABCD的边长为4,点E在边AB上,BE=1,∠DAM=45°,点F在射线AM上,且AF=2,过点F作AD的平行线交BA的延长线于点H,CF与AD相交于点G,连接EC,EG,EF.下列结论:①△ECF的面积为172;②△AEG的周长为8;③EG2=DG2+BE2;其中正确的是(C)A.①②③B.①③C.①②D.②③二、填空题(每小题3分,共15分)11.(2020·娄底)若ba=dc=12(a≠0),则b-da-c=__12__.12.如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是AB∥DE(答案不唯一).(只需写一个条件,不添加辅助线和字母)第12题图第13题图第14题图3第15题图13.(2020·盘锦)如图,△AOB三个顶点的坐标分别为A(5,0),O(0,0),B(3,6),以点O为位似中心,相似比为23,将△AOB缩小,则点B的对应点B′的坐标是__(2,4)或(-2,-4)__.14.(2020·临沂)如图,在△ABC中,D,E为边AB的三等分点,EF∥DG∥AC,H为AF与DG的交点.若AC=6,则DH=__1__.15.(2020·宜宾)在Rt△ABC中,∠ACB=90°,D是AB的中点,BE平分∠ABC交AC于点E,连接CD交BE于点O.若AC=8,BC=6,则OE的长是__9511__.三、解答题(共75分)16.(8分)(眉山中考)如图,△ABC三个顶点的坐标分别为A(0,-3),B(3,-2),C(2,-4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移6个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的相似比为2∶1,并直接写出点A2的坐标.解:(1)图略(2)图略,A2(-2,-2)17.(9分)如图,已知AB∥CD,AD,BC相交于点E,F为BC上一点,且∠EAF=∠C.求证:(1)∠EAF=∠B;(2)AF2=FE·FB.解:(1)∵AB∥CD,∴∠B=∠C,又∠C=∠EAF,∴∠EAF=∠B(2)∵∠EAF=∠B,∠AFE=∠BFA,∴△AFE∽△BFA,则AFFB=FEAF,∴AF2=FE·FB418.(9分)(2020·上海)已知:如图,在菱形ABCD中,点E,F分别在边BC,CD上,BE=FD,AF的延长线交BC的延长线于点H,AE的延长线交DC的延长线于点G.(1)求证:△AFD∽△GAD;(2)如果DF2=CF·CD,求证:BE=CH.证明:(1)∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,又∵BE=DF,∴△ABE≌△ADF(SAS),∴∠BAE=∠DAF.∵AB∥CD,∴∠G=∠BAE=∠DAF,又∵∠D=∠D,∴△AFD∽△GAD(2)∵DF2=CF·CD,∴CFDF=DFCD,∵AD∥BH,∴CFDF=CHAD,∴CHAD=DFCD,∵AD=CD,∴CH=DF,∵△ABE≌△ADF,∴BE=DF,∴BE=CH19.(9分)(2020·咸宁)如图,在Rt△ABC中,∠C=90°,点O在AC上,以OA为半径的半圆O交AB于点D,交AC于点E,过点D作半圆O的切线DF,交BC于点F.(1)求证:BF=DF;(2)若AC=4,BC=3,CF=1,求半圆O的半径长.题图答图解:(1)连接OD,如图①,∵过点D作半圆O的切线DF,交BC于点F,∴∠ODF=90°,∴∠ADO+∠BDF=90°,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD+∠BDF=90°,∵∠C=90°,∴∠OAD+∠B=90°,∴∠B=∠BDF,∴BF=DF(2)连接OF,如图②,设圆的半径为r,则OD=OE=r,∵AC=4,BC=3,CF=1,∴OC=4-r,DF=BF=3-1=2,∵OD2+DF2=OF2=OC2+CF2,∴r2+22=(4-r)2+12,∴r=138,故圆的半径为13820.(9分)王亮同学利用课余时间对学校旗杆的高度进行测量,他是这样测量的:把长为3m的标杆垂直放置于旗杆一侧的地面上,测得标杆底端距旗杆底端的距离为15m,然后往后退,直到视线通过标杆顶端正好看不到旗杆顶端时为止,测得此时人与标杆的水平距离为2m,已知王亮的身高为1.6m,请帮他计算旗杆的高度.(王亮眼睛距地面的高度视为他的身高)解:根据题意知AB⊥BF,CD⊥BF,EF⊥BF,EF=1.6m,CD=3m,FD=2m,BD=15m,过E点作EH⊥AB,交AB于点H,交CD于点G,则EG⊥CD,EH∥FB,EF=DG=BH,EG=FD,5CG=CD-EF,∴△ECG∽△EAH,∴EGEH=CGAH,即22+15=3-1.6AH,∴AH=11.9m,所以AB=AH+HB=AH+EF=11.9+1.6=13.5(m),即旗杆的高度为13.5m21.(10分)(2020·湘潭)如图,在平面直角坐标系中,点O为坐标原点,菱形OABC的顶点A的坐标为(3,4).(1)求过点B的反比例函数y=kx的解析式;(2)连接OB,过点B作BD⊥OB交x轴于点D,求直线BD的解析式.解:(1)过点A作AE⊥x轴,过B作BF⊥x轴,垂足分别为E,F,如图,∵A(3,4),∴OE=3,AE=4,∴AO=OE2+AE2=5,∵四边形OABC是菱形,∴AO=AB=OC=5,AB∥x轴,∴EF=AB=5,∴OF=OE+EF=3+5=8,∴B(8,4).故k=8×4=32,∴反比例函数解析式为y=32x(2)∵OB⊥BD,∴∠OBD=90°,∴∠OBF+∠DBF=90°,∵∠DBF+∠BDF=90°,∴∠OBF=∠BDF,又∠OFB=∠BFD=90°,∴△OBF∽△BDF,∴OFBF=BFDF,∴84=4DF,解得DF=2,∴OD=OF+DF=8+2=10,∴D(10,0).设BD所在直线解析式为y=kx+b,把B(8,4),D(10,0)分别代入,得8k+b=4,10k+b=0,解得k=-2,b=20,∴直线BD的解析式为y=-2x+2022.(10分)(2020·南京)如图,在△ABC和△A′B′C′中,D,D′分别是AB,A′B′上一点,ADAB=A′D′A′B′.(1)当CDC′D′=ACA′C′=ABA′B′时,求证:△ABC∽△A′B′C′.证明的途径可以用下面的框图表示,请填写其中的空格;6(2)当CDC′D′=ACA′C′=BCB′C′时,判断△ABC与△A′B′C′是否相似,并说明理由.题图答图(1)证明:∵ADAB=A′D′A′B′,∴ADA′D′=ABA′B′,∵CDC′D′=ACA′C′=ABA′B′,∴CDC′D′=ACA′C′=ADA′D′,∴△ADC∽△A′D′C′,∴∠A=∠A′,∵ACA′C′=ABA′B′,∴△ABC∽△A′B′C′.故答案为:CDC′D′=ACA′C′=ADA′D′,∠A=∠A′(2)如图,过点D,D′分别作DE∥BC,D′E′∥B′C′,DE交AC于E,D′E′交A′C′于E′.∵DE∥BC,∴△ADE∽△ABC,∴ADAB=DEBC=AEAC,同理,A′D′A′B′=D′E′B′C′=A′E′A′C′,∵ADAB=A′D′A′B′,∴DEBC=D′E′B′C′,∴DED′E′=BCB′C′,同理,AEAC=A′E′A′C′,∴AC-AEAC=A′C′-A′E′A′C′,即ECAC=E′C′A′C′,∴ECE′C′=ACA′C′,∵CDC′D′=ACA′C′=BCB′C′,∴CDC′D′=DED′E′=ECE′C′,∴△DCE∽△D′C′E′,∴∠CED=∠C′E′D′,∵DE∥BC,∴∠CED+∠ACB=180°,同理,∠C′E′D′+∠A′C′B′=180°,∴∠ACB=∠A′C′B′,∵ACA′C′=CBC′B′,∴△ABC∽△A′B′C′23.(11分)如图①,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边上一点,连接BO交AD于点F,OE⊥OB交BC边于点E.(1)求证:△ABF∽△COE;(2)当O为AC的中点,ACAB=2时,如图②,求OFOE的值;7(3)当O为AC边中点,ACAB=n时,请直接写出OFOE的值.解:(1)∵AD⊥BC,∴∠DAC+∠C=90°.∵∠BAC=90°,∴∠DAC+∠BAF=90°,∴∠BAF=∠C.∵OE⊥OB,∴∠BOA+∠COE=90°,∵∠BOA+∠ABF=90°,∴∠ABF=∠COE,∴△ABF∽△COE(2)过O作AC的垂线交BC于点H,则OH∥AB,由(1)得∠ABF=∠COE,∠BAF=∠C,∴∠AFB=∠OEC,∴∠AFO=∠HEO,而∠BAF=∠C,∴∠FAO=∠EHO,∴△OEH∽△OFA,∴OA∶OH=OF∶OE,又∵O为AC的中点,OH∥AB,∴OH为△ABC的中位线,∴OH=12AB,OA=OC=12AC,而ACAB=2,∴OA∶OH=2∶1,∴OF∶OE=2∶1,即OFOE=2(3)OFOE=n