8.6.3平面与平面垂直(二)基础预习初探1.教室内的黑板所在的平面与地面所在的平面垂直,在黑板上任意画一条直线与地面垂直吗?怎样画才能保证所画直线与地面垂直?提示:不一定,也可能平行,相交(不垂直);只要保证所画的线与两面的交线垂直即可.2.如图长方体ABCD-A′B′C′D′,在平面DCC′D′中,作直线l⊥DC.你能得出什么结论?提示:在平面DCC′D′内,若直线l垂直于交线DC,则直线l垂直于平面ABCD.【概念生成】平面与平面垂直的性质定理核心互动探究探究点一平面与平面垂直的性质定理的应用【典例1】如图所示,P是四边形ABCD所在平面外的一点,四边形ABCD是边长为a的菱形且∠DAB=60°,侧面PAD为正三角形,其所在平面垂直于底面ABCD.(1)若G为AD的中点,求证:BG⊥平面PAD;(2)求证:AD⊥PB.【思维导引】(1)连接BD,菱形ABCD,∠DAB=60°→△ABD为正三角形→BG⊥AD由平面与平面垂直的性质定理得出结论(2)连接PG,要证AD⊥PB,只需证AD⊥平面PBG即可.PADABCD平面底面【证明】(1)如图,在菱形ABCD中,连接BD,因为∠DAB=60°,所以△ABD为正三角形,因为G是AD的中点,所以BG⊥AD.因为平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,所以BG⊥平面PAD.(2)如图,连接PG.因为△PAD是正三角形,G是AD的中点,所以PG⊥AD,由(1)知BG⊥AD.又因为PG∩BG=G.所以AD⊥平面PBG.而PB⊂平面PBG,所以AD⊥PB.【类题通法】1.面面垂直的性质定理,为线面垂直的判定提供了依据和方法.所以当已知两个平面垂直的时候,经常找交线的垂线,这样就可利用面面垂直证明线面垂直.2.两平面垂直的性质定理告诉我们要将面面垂直转化为线面垂直,方法是在其中一个面内作(找)与交线垂直的直线.【定向训练】1.(2019·全国卷Ⅲ)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线【解析】选B.因为直线BM,EN都是平面BED内的直线,且不平行,即直线BM,EN是相交直线.设正方形ABCD的边长为2a,则由题意可得:DE=2a,DM=a,DN=a,DB=2a,根据余弦定理可得:BM2=DB2+DM2-2DB·DMcos∠BDE=9a2-4·a2cos∠BDE,EN2=DE2+DN2-2DE·DNcos∠BDE=6a2-4a2cos∠BDE,所以BM≠EN.22222.将一副斜边长相等的直角三角板拼接成如图所示的空间图形,其中AD=BD=,∠BAC=30°,若它们的斜边AB重合,让三角板ABD以AB为轴转动,则下列说法正确的是________.2①当平面ABD⊥平面ABC时,C、D两点间的距离为;②在三角板ABD转动过程中,总有AB⊥CD;③在三角板ABD转动过程中,三棱锥D-ABC体积的最大值为.236【解析】①取AB中点O,连接DO,CO,因为AD=BD=,所以DO=1,AB=2,OC=1,因为平面ABD⊥平面ABC,DO⊥AB,所以DO⊥平面ABC,DO⊥OC,所以DC=,①正确;22②若AB⊥CD,则AB⊥平面CDO,AB⊥OC,因为O为中点,所以AC=BC,∠BAC=45°与∠BAC=30°矛盾,所以②错误;③当DO⊥平面ABC时,棱锥的高最大,此时V棱锥=××AC×BC×DO=××1×1=,③正确.答案:①③336121316探究点二垂直关系的综合应用【典例2】如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=2,∠BAD=90°.(1)求证:AD⊥BC;(2)求异面直线BC与MD所成角的余弦值;(3)求直线CD与平面ABD所成角的正弦值.3【思维导引】(1)利用平面与平面垂直的性质及题设条件,证明AD⊥平面ABC,即可得出结论.(2)利用异面直线所成角的定义,先找角,再求值.(3)利用直线与平面所成角的定义,先找角,再求值.【解析】(1)由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,可得AD⊥平面ABC,故AD⊥BC.(2)连接CM.因为△ABC为等边三角形,M为AB的中点,故CM⊥AB,CM=.取棱AC的中点N,连接MN,ND.又因为M为棱AB的中点,故MN∥BC,所以∠DMN(或其补角)为异面直线BC与MD所成的角.3在Rt△DAM中,AM=1,故DM=因为AD⊥平面ABC,故AD⊥AC.在Rt△DAN中,AN=1,故DN=在等腰三角形DMN中,MN=1,可得cos∠DMN=所以,异面直线BC与MD所成角的余弦值为.22ADAM13.22ADAN13.1MN132,DM261326(3)因为平面ABC⊥平面ABD,而CM⊂平面ABC,故CM⊥平面ABD.所以,∠CDM为直线CD与平面ABD所成的角.在Rt△CAD中,CD==4.在Rt△CMD中,sin∠CDM=所以,直线CD与平面ABD所成角的正弦值为.22ACADCM3.CD434【类题通法】1.线面垂直条件的应用技巧当题目条件中含有线面垂直的条件时,一般想到的结论为:(1)线线垂直,即直线与平面内任一直线垂直.(2)面面垂直,即经过该直线的平面与该平面垂直.2.面面垂直条件的应用技巧当题目中含有面面垂直的条件时,一般想到的解题思路为:(1)可以在一个平面内找或作一条垂直于交线的直线,转化为线面垂直,进而转化为线线垂直.(2)求斜线与某一平面所成的角,观察该斜线是否与另一平面相交,若相交可过交点在该平面内作交线的垂线,进而找到斜线的射影.(3)求点到平面的距离,可转化为某一平面内一点到交线的距离.【知识延拓】如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC.(2)AD⊥AC.【解题指南】(1)根据AB⊥AD,EF⊥AD,可得EF∥AB,从而得EF∥平面ABC.(2)证明BC⊥AD,再由AB⊥AD,从而可得AD⊥平面ABC,即得AD⊥AC.【证明】(1)在平面ABD内,因为AB⊥AD,EF⊥AD,所以EF∥AB.又因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.(2)因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,BC⊂平面BCD,BC⊥BD,所以BC⊥平面ABD.因为AD⊂平面ABD,所以BC⊥AD.又因为AB⊥AD,BC∩AB=B,AB⊂平面ABC,BC⊂平面ABC,所以AD⊥平面ABC,又因为AC⊂平面ABC,所以AD⊥AC.【定向训练】(2018·北京高考)如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.(1)求证:PE⊥BC;(2)求证:平面PAB⊥平面PCD;(3)求证:EF∥平面PCD.【证明】(1)在△PAD中,PA=PD,E是AD的中点,所以PE⊥AD,又底面ABCD为矩形,所以AD∥BC,所以PE⊥BC.(2)因为底面ABCD为矩形,所以AD⊥CD,又因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面PAD,又PA⊂平面PAD,所以CD⊥PA,又因为PA⊥PD,CD,PD⊂平面PCD,CD∩PD=D,所以PA⊥平面PCD,又PA⊂平面PAB,所以平面PAB⊥平面PCD.(3)取PC的中点G,连接DG,FG,因为底面ABCD为矩形,所以ADBC,又E是AD的中点,所以DEBC,12在△PBC中,因为F,G分别是PB,PC的中点,所以FGBC,所以DEFG,四边形DEFG是平行四边形,所以EF∥DG,又因为EF⊄平面PCD,DG⊂平面PCD,所以EF∥平面PCD.12【补偿训练】1.如图①,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=AD=a,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到图②中△A1BE的位置,得到四棱锥A1-BCDE.(1)求证:CD⊥平面A1OC;(2)当平面A1BE⊥平面BCDE时,四棱锥A1-BCDE的体积为36,求a的值.2122【解析】(1)在图①中,因为AB=BC=AD=a,E是AD的中点,∠BAD=,所以BE⊥AC.即在图②中,BE⊥A1O,BE⊥OC,又A1O∩OC=O,从而BE⊥平面A1OC.因为BCADED,所以四边形BCDE为平行四边形,所以CD∥BE,所以CD⊥平面A1OC.21212(2)由已知,平面A1BE⊥平面BCDE,且平面A1BE∩平面BCDE=BE,又由(1)可得A1O⊥BE,所以A1O⊥平面BCDE.即A1O是四棱锥A1-BCDE的高.由图①知,A1O=AB=a,平行四边形BCDE的面积S=BC·AB=a2,从而四棱锥A1-BCDE的体积为V=S·A1O=×a2×a=a3.由a3=36,得a=6.2222131322262622.如图,在三棱锥P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面BAC,D,E分别为AB,AC的中点.(1)求证:AB⊥PE.(2)求二面角A-PB-E的大小.【解析】(1)连接PD,因为PA=PB,D为AB的中点,所以PD⊥AB.因为DE∥BC,BC⊥AB,所以DE⊥AB.又因为PD∩DE=D,所以AB⊥平面PDE,因为PE⊂平面PDE,所以AB⊥PE.(2)因为平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,PD⊥AB,所以PD⊥平面ABC.则DE⊥PD,又ED⊥AB,PD∩AB=D,所以DE⊥平面PAB,过D作DF垂直PB于F,连接EF,则EF⊥PB,∠DFE为所求二面角的平面角,则DE=,DF=,则tan∠DFE=故二面角A-PB-E的大小为60°.3232DE3DF,【课堂小结】课堂素养达标1.平面α⊥平面β,直线a∥平面α,则()A.a⊥βB.a∥βC.a与β相交D.以上都有可能【解析】选D.因为a∥α,平面α⊥平面β,所以直线a与β垂直、相交、平行都有可能.2.如图所示,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在面ABC上的射影H必在()A.直线AB上B.直线BC上C.直线CA上D.△ABC内部【解析】选A.⇒CA⊥平面ABC1⇒平面ABC⊥平面ABC1,所以过C1作垂直于平面ABC的垂线,垂线在平面ABC1内,所以点H在两平面的交线上,即H∈AB.1CAABCABC,3.已知平面α、β和直线m、l,则下列命题中正确的是()A.若α⊥β,α∩β=m,l⊥m,则l⊥βB.若α∩β=m,l⊂α,l⊥m,则l⊥βC.若α⊥β,l⊂α,则l⊥βD.若α⊥β,α∩β=m,l⊂α,l⊥m,则l⊥β【解析】选D.选项A缺少了条件l⊂α;选项B缺少了条件α⊥β;选项C缺少了条件α∩β=m,l⊥m;选项D具备了面面垂直的性质定理的全部条件.4.如图所示,平面α⊥平面β,A∈α,B∈β,AB与两平面α,β所成的角分别为45°和30°,过A,B分别作两平面交线的垂线,垂足分别为A′,B′,则AB∶A′B′等于()A.2∶1B.3∶1C.3∶2D.4∶3【解析】选A.如图,由已知得AA′⊥平面β,∠ABA′=30°,BB′⊥平面α,∠BAB′=45°,设AB=a,则BA′=a,BB′=a,在Rt△BA′B′中,A′B′=a,所以322212AB2.AB1