数列(5)等比数列及其前n项和A1、已知等比数列{}na,11a,且1234,2,aaa成等差数列,则234aaa()A.7B.12C.14D.642、在各项均为正数的等比数列nb中,若783bb,则3132314loglog......logbbb等于()A.5B.6C.7D.83、已知数列na是等比数列,且141,18aa,则na的公比q为()A.-2B.2C.12D.124、已知下列结论:①若数列na的前n项和21nSn,则数列na一定为等差数列②若数列na的前n项和21nnS,则数列na一定为等比数列③非零实数,,abc不全相等,若,,abc成等差数列,则111,,abc可能构成等差数列④非零实数,,abc不全相等,若,,abc成等比数列,则111,,abc一定构成等比数列则其中正确的结论是()A.②④B.①③C.②③D.①④5、等比数列{}na的各项均为正数,公比q满足24q,则3445aaaa()A.12B.12C.14D.26、正项等比数列na中,201820162017aaa.若2116mnaaa,则41mn的最小值等于()A.1B.35C.136D.327、等比数列na的各项均为正数,且385618aaaa,则3132310logloglogaaa()A.12B.10C.8D.32log58、已知na是由正数组成的等比数列,nS表示na的前n项的和.若1243,144aaa则10S的值是()A.511B.1023C.1533D.30699、已知数列na的前n项和21nnS,则26aa()A.164B.116C.16D.6410、在正项等比数列na中,若13213,,22aaa成等差数列,则2016201820152017aaaa的值为()A.3或-1B.9或1C.3D.911、等比数列na的公比大于1,514215,6aaaa,则3a_______.12、等比数列na的各项均为正数,nS是其前n项和,且满足312283Saa,416a,则4S__________13、已知函数12,02()121,12xxfxxx,若数列{}na满足1()nnafa,且123,,aaa成等比数列,*0(4,N)nann,则1a的值为_______.14、设等比数列{na}的前n项和为nS,若36270aa,则63SS=__________15、已知数列na的前n项和为nS,且2*2NnSnnn,,数列nb满足*24log3N.nnabn,1.求,nnab;2.求数列{}·nnab的前n项和nT.答案以及解析1答案及解析:答案:C解析:2答案及解析:答案:C解析:3答案及解析:答案:A解析:4答案及解析:答案:A解析:①若数列na的前n项和21nSn,可得111aS;2n时,2211(1)121nnnaSSnnn,上式对1n不成立,则数列na不为等差数列,故①错;②若数列na的前n项和21nnS,可得111aS,2n时,11121212nnnnnnaSS,则数列na为首项为1,公比为的等比数列,故②对;③非零实数,,abc不全相等,若,,abc成等差数列,可得1111,,abbcbacbbaabcbbc,由abbc,即ac,即为abc,不成立,则111,,abc不可能构成等差数列,故③错;④非零实数,,abc不全相等,若,,abc成等比数列,可得2211,bacacb,则111,,abc一定构成等比数列,故④对.故选:A5答案及解析:答案:A解析:6答案及解析:答案:D解析:由题设222,1qqqq(舍去),则222111624mnmnaaaqamn,所以6mn,41141141341546662nmmnmnmnmn,应选答案D7答案及解析:答案:B解析:8答案及解析:答案:D解析:9答案及解析:答案:D解析:10答案及解析:答案:C解析:设正项等比数列{}na的公比为0q,∵13213,,22aaa成等差数列,∴32123aaa,化为211123aqaqa,即2230qq,解得3q.则22016201820162201520172015(1)3(1)aaaqqaaaq,故选:C.11答案及解析:答案:4解析:12答案及解析:答案:30解析:设数列na的公比为q,则0q,由题意得12312283aaaaa,得31226aaa,即2260qq,得2q或32q(舍去)又34116aaq,得12a,则4414121230112aqSq.13答案及解析:答案:18解析:由题意得112,02121,12nnnnnaaaaa,当4320aa时,显然不合题意,所以43210aa,所以312a,由递推公式得214a或234a,根据123,,aaa成等比数列,可分别求得118a或198a(舍去),则118a,经检验符合题意,故118a.14答案及解析:答案:28解析:15答案及解析:答案:1.由22nSnn,可得当2n时,221221141,nnnaSSnnnnn当1n时,13a符合上式,所以*41N()nann.由24log3nnab,可得2414log3nnb,解得1*(2N)nnbn.2.141?2nnnabn,1231372112152412nnTn,①123423272112152412nnTn,②①-②可得123413422222[412]nnnTnn12(12)1234412nn5542nn,5452nnTn.解析: