11.4解一元一次不等式一.选择题(共3小题)1.已知(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m的值为()A.4B.±4C.3D.±32.下列不等式中,属于一元一次不等式的是()A.4>1B.3x﹣2<4C.<2D.4x﹣3<2y﹣73.下列式子①7>4;②3x≥2π+1;③x+y>1;④x2+3>2x;⑤>4中,是一元一次不等式的有()A.4个B.3个C.2个D.1个二.填空题(共13小题)4.若(m﹣2)x|3﹣m|+2≤7是关于x的一元一次不等式,则m=.5.不等式3x≤x+4的非负整数解是.6.写出含有解为x=1的一元一次不等式(写出一个即可).7.不等式3(x﹣1)≥5(x﹣3)+6的正整数解是.8.不等式的所有自然数解的和等于.9.不等式2x﹣m≤0的非负整数解只有3个,则m的取值范围是10.对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=11.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是.11.若不等式(m﹣3)x|m﹣2|+2>0是关于x的一元一次不等式,则m的值为.12.关于x的不等式3x﹣2m<x﹣m的正整数解为1、2、3,则m取值范围是.13.不等式3﹣≥2+的非负整数解是.14.若x=﹣3是关于x的方程x=m+1的解,则关于x的不等式2(1﹣2x)≤1+m的最小整数解为.15.不等式﹣2(x﹣3)>1的自然数解是.16.解不等式:2x﹣9≤﹣x的非负整数解有个.三.解答题(共14小题)17.解不等式≥1,并把它的解集表示在数轴上.18.解不等式2﹣>,并把解集在数轴上表示出来;19.解不等式:﹣1,并把解集表示在数轴上.20.阅读理解:我们把称作二阶行列式,规定它的运算法则为=ad﹣bc,例如=1×4﹣2×3=﹣2,如果>0,求x的取值范围,并在数轴上表示来.21.已知关于x,y的二元一次方程组的解满足不等式x+y<3,且实数b满足关于b的一元一次不等式3b﹣4>2b﹣3.试比较实数a,b的大小.22.解不等式,并把解集在数轴上表示.﹣<﹣2.23.解不等式,并在数轴上表示它们的解集.(1)2(1﹣x)<x﹣2;(2)﹣≥x﹣5.24.已知关于x,y的方程组的解满足不等式x+y≤3,求m的取值范围.25.已知关于x的方程x﹣1的解比关于x的方程2[x﹣2(4﹣2a)]=(x+a)的解小2,求a的值.26.已知关于x的方程3x+a=x﹣7的根是正数,求实数a的取值范围.27.已知x=3是关于x的不等式3x﹣的解,求a的取值范围.28.已知方程组,求m为何值时,x>y.29.已知关于x,y的二元一次方程组的解满足x+y<3,求满足条件的m的所有非负整数值.30.m为何值时,关于x的方程x﹣1=6m+5(x﹣m)的解为非负数.参考答案与试题解析一.选择题(共3小题)1.已知(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m的值为()A.4B.±4C.3D.±3【分析】根据一元一次不等式的定义,|m|﹣3=1,m+4≠0,分别进行求解即可.【解答】解:根据题意|m|﹣3=1,m+4≠0解得|m|=4,m≠﹣4所以m=4.故选:A.【点评】本题考查一元一次不等式的定义中的未知数的最高次数为1次,本题还要注意未知数的系数不能是0.2.下列不等式中,属于一元一次不等式的是()A.4>1B.3x﹣2<4C.<2D.4x﹣3<2y﹣7【分析】根据一元一次不等式的定义,未知数的次数是1,可得答案.【解答】解:A、是不等式,故A错误;B、是一元一次不等式,故B正确;C、是分式不等式,故C错误;D、是二元一次不等式,故D错误;故选:B.【点评】本题主要是对一元一次不等式定义的“未知数的最高次数为1次”这一条件的考查.3.下列式子①7>4;②3x≥2π+1;③x+y>1;④x2+3>2x;⑤>4中,是一元一次不等式的有()A.4个B.3个C.2个D.1个【分析】根据一元一次不等式的定义求解即可.【解答】解:②3x≥2π+1是一元一次不等式,故选:D.【点评】本题考查一元一次不等式的定义中的未知数的最高次数为1次,本题还要注意未知数的系数不能是0.二.填空题(共13小题)4.若(m﹣2)x|3﹣m|+2≤7是关于x的一元一次不等式,则m=4.【分析】根据一元一次不等式的定义即可求出答案.【解答】解:由一元一次不等式的定义可知:解得:m=4故答案为:4【点评】本题考查一元一次不等式的定义,解题的关键是正确理解一元一次不等式的定义,本题属于基础题型.5.不等式3x≤x+4的非负整数解是0,1,2.【分析】首先求出不等式的解集,然后求得不等式的非负整数解.【解答】解:解不等式3x≤x+4得,x≤2,∴不等式3x≤x+4的非负整数解是0,1,2,故答案为:0,1,2.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.6.写出含有解为x=1的一元一次不等式x>0(答案不唯一)(写出一个即可).【分析】根据一元一次不等式的定义写出的一元一次不等式的解集含有x=1即可.【解答】解:例如:x>0(答案不唯一).故答案为:x>0(答案不唯一).【点评】本题考查的是一元一次不等式的定义,即有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.7.不等式3(x﹣1)≥5(x﹣3)+6的正整数解是1,2,3.【分析】先求出不等式的解集,在取值范围内可以找到正整数解.【解答】解:3(x﹣1)≥5(x﹣3)+63x﹣3≥5x﹣15+6,3x﹣5x≥﹣15+6+3,﹣2x≥﹣6,∴x≤3所以不等式3(x﹣1)≥5(x﹣3)+6的正整数解为:1,2,3.【点评】本题考查不等式的解法及整数解的确定.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.8.不等式的所有自然数解的和等于3.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的自然数数即可.【解答】解:2(x﹣2)﹣3(1﹣x)<8,2x﹣4﹣3+3x<8,2x+3x<8+4+3,5x<15,x<3,∴不等式的所有自然数解的和为0+1+2=3,故答案为:3.【点评】本题考查了不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.9.不等式2x﹣m≤0的非负整数解只有3个,则m的取值范围是4≤m<6【分析】首先确定不等式组的解集,先利用含m的式子表示,根据非负整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m的不等式,从而求出m的范围.【解答】解:解不等式2x﹣m≤0,得:x≤,∵不等式2x﹣m≤0的非负整数解只有3个,∴不等式得非负整数解为0、1、2,则2≤<3,解得:4≤m<6,故答案为:4≤m<6.【点评】本题考查了一元一次不等式的整数解,正确解出不等式的解集,正确确定的范围是解决本题的关键.解不等式时要用到不等式的基本性质.10.对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=11.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是1.【分析】根据新定义可得出关于x的一元一次不等式,解之取其中的正整数即可得出结论.【解答】解:∵3※x=3x﹣3+x﹣2<2,∴x<,∵x为正整数,∴x=1.故答案为:1.【点评】本题考查一元一次不等式的整数解以及实数的运算,通过解不等式找出x<是解题的关键.11.若不等式(m﹣3)x|m﹣2|+2>0是关于x的一元一次不等式,则m的值为1.【分析】利用一元一次不等式的定义判断即可确定出m的值.【解答】解:∵不等式(m﹣3)x|m﹣2|+2>0是关于x的一元一次不等式,∴|m﹣2|=1,且m﹣3≠0,解得:m=3(舍去)或m=1,则m的值为1,故答案为:1【点评】此题考查了一元一次不等式的定义,熟练掌握一元一次不等式的定义是解本题的关键.12.关于x的不等式3x﹣2m<x﹣m的正整数解为1、2、3,则m取值范围是6<m≤8.【分析】先表示出不等式3x﹣2m<x﹣m的解集,再由正整数解为1、2、3,可得出3<≤4,解出即可.【解答】解:解不等式得:x<,∵不等式的正整数解为1、2、3,∴3<≤4解得:6<m≤8,故答案为6<m≤8.【点评】本题考查了一元一次不等式的整数解,解答本题的关键是得出关于m的不等式.13.不等式3﹣≥2+的非负整数解是0,1,2.【分析】先求出不等式的解集,再求出整数解即可.【解答】解:3﹣≥2+,24﹣2(x﹣1)≥16+3(x﹣1),24﹣2x+2≥16+3x﹣3,﹣2x﹣3x≥16﹣3﹣24﹣2,﹣5x≥﹣13,x≤2.6,所以不等式的非负整数解是0,1,2,故答案为:0,1,2.【点评】本题考查了解一元一次不等式和不等式的整数解,能根据不等式的性质求出不等式的解集是解此题的关键.14.若x=﹣3是关于x的方程x=m+1的解,则关于x的不等式2(1﹣2x)≤1+m的最小整数解为2.【分析】直接根据题意得出m的值,再利用不等式解法得出答案.【解答】解:∵x=﹣3是关于x的方程x=m+1的解,∴﹣3=m+1,解得:m=﹣4,∵2(1﹣2x)≤1+m,∴2﹣4x≤1﹣4,解得:x≥,故最小整数解为2.故答案为:2.【点评】此题主要考查了一元一次不等式的整数解,正确得出m的值是解题关键.15.不等式﹣2(x﹣3)>1的自然数解是0,1,2.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的自然数解即可.【解答】解:﹣2x+6>1﹣2x>1﹣6﹣2x>﹣5x<2.5所以不等式﹣2(x﹣3)>1的自然数解是0,1,2;故答案为:0,1,2【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.16.解不等式:2x﹣9≤﹣x的非负整数解有4个.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可得到结论.【解答】解:2x﹣9≤﹣x,2x+x≤9,3x≤9,x≤3,所以不等式:2x﹣9≤﹣x的非负整数解有0,1,2,3四个,故答案为4.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.同时考查了解一元一次方程.三.解答题(共14小题)17.解不等式≥1,并把它的解集表示在数轴上.【分析】先去分母,再去括号,移项、合并同类项,把x的系数化为1即可.【解答】解:去分母,得:2(2x﹣1)﹣3(3x﹣1)≥6,去括号,得:4x﹣2﹣9x+3≥6,移项,得:4x﹣9x≥6+2﹣3,合并同类项,得:﹣5x≥5,系数化为1,得:x≤﹣1,将不等式的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.18.解不等式2﹣>,并把解集在数轴上表示出来;【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项可得.【解答】解:去分母,得:12﹣3(x+4)>2(1﹣x),去括号,得:12﹣3x﹣12>2﹣2x,移项,得:﹣3x+2x>2﹣12+12,合并同类项,得:﹣x>2,系数化为1,得:x<﹣2,将解集表示在数轴上如下:【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.19.解不等式:﹣1,并把解集表示在数轴上.【分析】先去分母,再去括号,移项、合并同类项,把x的系数化为1即可.【解答】解:去分母,得:4(2x﹣1)≤3(3x+2)﹣12,去括号,得:8x﹣4≤9x+6﹣12,移项,得:8x﹣9x≤6﹣12+4,合并同类项,得:﹣x≤﹣2,系数化为1,得:x≥2,将解集