8.4因式分解教学目标:(一)教学知识点使学生了解因式分解的意义,知道它与整式乘法在整式变形过程中的相反关系.(二)能力训练要求通过观察,发现因式分解与整式乘法的关系,培养学生的观察能力和语言概括能力.(三)情感与价值观要求通过观察,推导因式分解与整式乘法的关系,让学生了解事物间的因果联系.教学重、难点:教学重点:1.理解因式分解的意义.2.识别因式分解与整式乘法的关系.教学难点:通过观察,归纳因式分解与整式乘法的关系.教学过程:一、创设情境,导入新课[师]大家会计算(a+b)(a-b)吗?[生]会.(a+b)(a-b)=a2-b2.[师]对,这是大家学过的平方差公式,我们是在整式乘法中学习的.从式子(a+b)(a-b)=a2-b2中看,由等号左边可以推出等号右边,那么从等号右边能否推出等号左边呢?即a2-b2=(a+b)(a-b)是否成立呢?[生]能从等号右边推出等号左边,因为多项式a2-b2与(a+b)(a-b)既然相等,那么两个式子交换一下位置还成立.[师]很好,a2-b2=(a+b)(a-b)是成立的,那么如何去推导呢?这就是我们即将学习的内容:因式分解的问题.二、明确目标,互助探究:1、想一想由a(a+1)(a-1)得到a3-a的变形是什么运算?由a3-a得到a(a+1)(a-1)的变形与这种运算有什么不同?你还能举一些类似的例子加以说明吗?[生]由a(a+1)(a-1)得到a3-a的变形是整式乘法,由a3-a得到a(a+1)(a-1)的变形是因式分解,这两种过程正好相反.[生]由(a+b)(a-b)=a2-b2可知,左边是整式乘法,右边是一个多项式;由a2-b2=(a+b)(a-b)来看,左边是一个多项式,右边是整式的乘积形式,所以这两个过程正好相反.[师]非常棒.下面我们一起来总结一下.如:m(a+b+c)=ma+mb+mc(1)ma+mb+mc=m(a+b+c)(2)联系:等式(1)和(2)是同一个多项式的两种不同表现形式.区别:等式(1)是把几个整式的积化成一个多项式的形式,是乘法运算.等式(2)是把一个多项式化成几个整式的积的形式,是因式分解.即ma+mb+mcm(a+b+c).所以,因式分解与整式乘法是相反方向的变形.2、议一议你能尝试把a3-a化成n个整式的乘积的形式吗?与同伴交流.[师]大家可以观察a3-a与993-99这两个代数式.[生]a3-a=a(a2-1)=a(a-1)(a+1)3、做一做(1)计算下列各式:①(m+4)(m-4)=__________;②(y-3)2=__________;③3x(x-1)=__________;④m(a+b+c)=__________;⑤a(a+1)(a-1)=__________.[生]解:①(m+4)(m-4)=m2-16;②(y-3)2=y2-6y+9;③3x(x-1)=3x2-3x;④m(a+b+c)=ma+mb+mc;⑤a(a+1)(a-1)=a(a2-1)=a3-a.(2)根据上面的算式填空:①3x2-3x=()();②m2-16=()();③ma+mb+mc=()();④y2-6y+9=()2.⑤a3-a=()().[生]把等号左右两边的式子调换一下即可.即:①3x2-3x=3x(x-1);②m2-16=(m+4)(m-4);③ma+mb+mc=m(a+b+c);④y2-6y+9=(y-3)2;⑤a3-a=a(a2-1)=a(a+1)(a-1).[师]能分析一下两个题中的形式变换吗?[生]在(1)中,等号左边都是乘积的形式,等号右边都是多项式;在(2)中正好相反,等号左边是多项式的形式,等号右边是整式乘积的形式.[师]在(1)中我们知道从左边推右边是整式乘法;在(2)中由多项式推出整式乘积的形式是因式分解.把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解(factorization).4、练习下列各式从左到右的变形,哪些是因式分解?(1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);(3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2.[生](1)左边是整式乘积的形式,右边是一个多项式,因此从左到右是整式乘法,而不是因式分解;(2)左边是一个多项式,右边是几个整式的积的形式,因此从左到右的变形是因式分解;(3)和(2)相同,是因式分解;(4)是因式分解.[师]大家认可吗?[生]第(4)题不对,因为虽然x2-3x=x(x-3),但是等号右边x(x-3)+2整体来说它还是一个多项式的形式,而不是乘积的形式,所以(4)的变形不是因式分解.三、总结归纳,课堂反馈本节课学习了因式分解的意义,即把一个多项式化成几个整式的积的形式;还学习了整式乘法与因式分解的关系是相反方向的变形.