七年级数学下册 第7章 一元一次不等式和不等式组 7.1 不等式及其基本性质教案 (新版)沪科版

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

7.1不等式及其基本性质【教学内容】课本上不等式的五个基本性质,并学会应用.【教学目标】1、掌握不等式的五个基本性质并且能正确应用.2、经历探究不等式基本性质的过程,体会不等式与等式的异同点,发展学生分析问题和解决问题的能力.3、开展研究性学习,使学生初步体会学习不等式基本性质的价值.【重点难点】重点:理解不等式的五个基本性质.难点:对不等式的基本性质3的认识.【教学方法】本节课采用“类比-实验-交流”的教学方法.【教学过程】一、回顾交流.1、等式的基本性质解一元一次方程的基本步骤2、问题牵引:用“﹥”或“﹤”填空,并总结其中的规律:(1)53,5+23+2,5-23-2;(2)–13,-1+23+2,-1-33-3;结果:(1)、(2)、根据发现的规律填空:当不等式两边加或减去同一个数(正数或负数)时,不等号的方向______3、继续探究,接着又出示(3)、(4)题:(3)6>2,6×52×5,6×(-5)2×(-5),(4)23,(-2)×63×6,(-2)×(-6)3×(-6).得到:当不等式的两边同乘以一个正数时,不等号的方向不变;当不等式的两边同乘以一个负数时,不等号的方向改变.总结出不等式的性质:不等式的性质1:不等式的两边加(或减)同一个数(或式子),不等号的方向不变.字母表示为:如果a>b,那么a±cb±c不等式的性质2:不等式的两边乘(或除以)同一个正数,不等号的方向不变.字母表示为:如果ab,c0那么acbc,不等式的性质3:不等式的两边乘(或除以)同一个负数,不等号的方向改变.字母表示为:如果a>b,c<0那么acbc,不等式的对称性:如果ab,那么ba不等式传递性:如果ab,bc,那么ac二、范例学习,应用所学.1、利用不等式的性质解下列不等式.(1)x-7>26(2)3x2x+1(3)23x﹥50(4)-4x﹥32、逐题分析得出结果.(1)x-7>26分析:解未知数为x的不等式,就是要使不等式逐步化为x﹥a或x﹤a的形式.解:(1)为了使不等式x-7>26中不等号的一边变为x,根据不等式的性质1,不等式两边都加7,不等号的方向不变,得x-7+7﹥26+7x﹥33(2)3x2x+1为了使不等式3x2x+1中不等号的一边变为x,根据不等式的性质1,不等式两边都减去2x,不等号的方向不变.3x-2x﹤2x+1-2xx﹤1通过两小题得到:解不等式时也可以“移项”,即把不等式的一边的某项变号后移到另一边,而不改变不等号的方向.(3)23x﹥50为了使不等式23x﹥50中不等号的一边变为x,根据不等式的性质2,不等式的两边都乘32不等号的方向不变,得x﹥75(4)-4x﹥3为了使不等式-4x﹥3中的不等号的一边变为x,根据不等式的性质3,不等式两边都除以-4,不等号的方向改变,得x-43通过(3)(4)的求解过程,类似于解方程两边都除以未知数的系数(未知数系数化为1),解不等式时要注意未知数系数的正负,以决定是否改变不等号的方向.三、课堂探究.已知a0,试比较2a与a的大小.四、课堂小结提问.不等式性质的作用.

1 / 3
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功