7.2.2二元一次方程组的解法-加减法(2)教学目的使学生了解用加减法解二元一次方程组的一般步骤,能熟练地用加减法解较复杂的二元一次方程组。重点、难点1.重点:将方程组化成两个方程中的某一未知数的系数的绝对值相等。2.难点:将方程组化成两个方程中的某一未知数的系数的绝对值相等。教学过程一、复习下列方程组用加减法可消哪一个元,如何消元,消元后的一元一次方程是什么?3x+4y=-3.44x-2y=5.66x-4y=5.27x-2y=7.7二、新授例l.解方程组9x+2y=15①3x+4y=10②分析如果用加减法解,直接把两个方程的两边相减能消去一个未知数吗?如果不行,那该怎么办呢?当两个方程中某个未知数系数的绝对值相等时,可用加减法求解,你有办法将两个方程中的某个系数变相同或相反吗?方程②中y的系数是方程①中y系数的2倍,所以只要将①×2例2.解方程组3x-4y=10①15x+6y=42②这个方程组中两个方程的x,y系数都不是整数倍。那么如何把其中一个未知数的系数变为绝对值相等呢?该消哪一个元比较简便呢?(让学生自主探索怎样适当地把方程变形,才能转化为例3或例4那样的情形。)分析:(1)若消y,两个方程未知数y系数的绝对值分别为4、6,要使它们变成12(4与6的最小公倍数),只要①×3,②×2(2)若消x,只要使工的系数的绝对值等于15。(3与5的最小公倍数,因此只要①×3,②×2)请同学们用加减法解本节例2中的方程组。2x-7y=83x-8y-10=0做完后,并比较用加减法和代人法解,哪种方法方便?教师讲评:应先整理为一般式。三、巩固练习教科书第33页,练习1.3。四、小结(教师说出条件部分,学生回答结论部分)。加减法解二元一次方程组,两方程中若有一个未知数系数的绝对值相等,可直接加减消元;若同一未知数的系数绝对值不等,则应选一个或两个方程变形,使一个未知数的系数的绝对值相等,然后再直接用加减法求解;若方程组比较复杂,应先化简整理。