中考数学中的分段函数题型解法举例仪陇县实践数学名师工作室何直分段函数,是近几年中考数学中经常遇到的题型。它是考查分类思想,读取、搜集、处理图像信息等综合能力的综合题。这些分段函数都是直线型。通常是正比例函数的图像和一次函数的图像构成。下面我们归纳分析如下,供学复习时参考。1、二段型分段函数1.1正比例函数与一次函数构成的分段函数解答这类分段函数问题的关键,就是分别确定好正比例函数的解析式和一次函数的解析式。例1某家庭装修房屋,由甲、乙两个装修公司合作完成,选由甲装修公司单独装修3天,剩下的工作由甲、乙两个装修公司合作完成.工程进度满足如图1所示的函数关系,该家庭共支付工资8000元.(1)完成此房屋装修共需多少天?(2)若按完成工作量的多少支付工资,甲装修公司应得多少元?解析:设正比例函数的解析式为:y=k1x,因为图象经过点(3,41),所以,41=k1×3,所以k1=121,所以y=121x,0<x<3设一次函数的解析式(合作部分)是y=k2x+b,(0kkb,,是常数)因为图象经过点(3,41),(5,21),所以,由待定系数法得:21541322bkbk,解得:81,812bk.∴一次函数的表达式为8181xy,所以,当1y时,11188x,解得9x∴完成此房屋装修共需9天。方法2解:由正比例函数解析式可知:甲的效率是112,乙工作的效率:11181224甲、乙合作的天数:311641224(天)∵甲先工作了3天,∴完成此房屋装修共需9天(2)由正比例函数的解析式:y=121x,可知:甲的工作效率是112,所以,甲9天完成的工作量是:139124,∴甲得到的工资是:3800060004(元)评析:在这里未知数的系数的意义是表示他们的工作效率。例2、一名考生步行前往考场,10分钟走了总路程的14,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图2所示(假定总路程为1),则他到达考场所花的时间比一直步行提前了()A.20分钟B.22分钟C.24分钟D.26分钟解析:步行前往考场,是满足正比例函数关系,设正比例函数的解析式为:y=k1x,因为图象经过点(10,41),所以,41=k1×10,所以k1=401,所以y=401x,0<x<10由正比例函数解析式可知:甲的效率是401,所以,步行前往考场需要的时间是:1÷401=40(分钟),乘出租车赶往考场,是满足一次函数关系,所以,设一次函数的解析式是y=k2x+b,(0kkb,,是常数),因为图象经过点(10,41),(12,21),所以,由待定系数法得:2112411022bkbk,解得:解得:1,812bk,∴一次函数的表达式为:181xy,所以,乘出租车赶往考场用的时间是:x=43÷81,解得:x=6分钟,所以,先步行前往考场,后乘出租车赶往考场共用时间为:10+6=16分钟,所以,他到达考场所花的时间比一直步行提前了:40-16=24(分钟),故选C。评析:在这里未知数的系数的意义是表示他们的行使速度。例3、某公司专销产品A,第一批产品A上市40天内全部售完.该公司对第一批产品A上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图(3)中的折线表示的是市场日销售量与上市时间的关系;图(4)中的折线表示的是每件产品A的销售利润与上市时间的关系.(1)试写出第一批产品A的市场日销售量y与上市时间t的关系式;(2)第一批产品A上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?解析:(1)由图3可得,当0≤t≤30时,市场日销售量y与上市时间t的关系是正比例函数,所以设市场的日销售量:y=kt,∵点(30,60)在图象上,∴60=30k.∴k=2.即y=2t,当30≤t≤40时,市场日销售量y与上市时间t的关系是一次函数关系,所以设市场的日销售量:y=k1t+b,因为点(30,60)和(40,0)在图象上,所以116030040kbkb,解得k1=-6,b=240.∴y=-6t+240.综上可知,当0≤t≤30时,市场的日销售量:y=2t,当30≤t≤40时,市场的日销售量:y=-6t+240。(2)由图4可得,当0≤t≤20时,市场销售利润w与上市时间t的关系是正比例函数,所以设市场的日销售量:w=kt,∵点(20,60)在图象上,∴60=20k.∴k=3.即w=3t,当20≤t≤40时,市场销售利润w与上市时间t的关系是常数函数,所以,w=60,∴当0≤t≤20时,产品的日销售利润:m=3t×2t=6t2;∵k=6>0,所以,m随t的增大而增大,∴当t=20时,产品的日销售利润m最大值为:2400万元。当20≤t≤30时,产品的日销售利润:m=60×2t=120t,∵k=120>0,所以,m随t的增大而增大,∴当t=30时,产品的日销售利润m最大值为:3600万元;当30≤t≤40时,产品的日销售利润:m=60×(-6t+240)=-360t+14400;∵k=-360<0,所以,m随t的增大而减小,∴当t=30时,产品的日销售利润mm最大值为:3600万元,综上可知,当t=30天时,这家公司市场的日销售利润最大为3600万元.评析:本题不仅考查同学们对分段函数意义的理解,而且同时还考查了同学们对分类思想的掌握情况,和对一次函数性质的理解和应用。1.2一次函数与一次函数构成的分段函数例4、为了鼓励小强做家务,小强每月的费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的.若设小强每月的家务劳动时间为x小时,该月可得(即下月他可获得)的总费用为y元,则y(元)和x(小时)之间的函数图像如图5所示.(1)根据图像,请你写出小强每月的基本生活费;父母是如何奖励小强家务劳动的?(2)若小强5月份希望有250元费用,则小强4月份需做家务多少时间?解:(1)从图象上可知道,小强父母给小强的每月基本生活费为150元;当0≤x≤20时,y(元)是x(小时)的一次函数,不妨设y=k1x+150,同时,图象过点(20,200),所以,200=k1×20+150,解得:k1=2.5,所以,y=2.5x+150,当20<x时,y(元)是x(小时)的一次函数,不妨设y=k2x+b,同时,图象过点(20,200),(30,240),所以,240302002022bkbk,解得:k2=4,b=120,所以,y=4x+120,所以,如果小强每月家务劳动时间不超过20小时,每小时获奖励2.5元;如果小强每月家务劳动时间超过20小时,那么20小时按每小时2.5元奖励,超过部分按每小时4元奖励(2)从图象上可知道,小强工作20小时最多收入为200元,而5月份得到的费用为250元,大于200元,所以说明4月小强的工作时间一定超过20小时,所以应选择分段函数中当20<x时的一段,所以,由题意得,4120250x,解得:x=32.5答:当小强4月份家务劳动32.5小时,5月份得到的费用为250元.评析:本题不仅考查同学们对分段函数意义的理解,而且同时还考查了同学们对分类思想的掌握情况,和对分段函数的选择能力。1.3常数函数与一次函数构成的分段函数例5、有甲、乙两家通迅公司,甲公司每月通话的收费标准如图6所示;乙公司每月通话收费标准如表1所示.(1)观察图6,甲公司用户月通话时间不超过100分钟时应付话费金额是元;甲公司用户通话100分钟以后,每分钟的通话费为元;(2)李女士买了一部手机,如果她的月通话时间不超过100分钟,她选择哪家通迅公司更合算?如果她的月通话时间超过100分钟,又将如何选择?解析:1)从图6,可以看出,这是常数函数与一次函数构成的分段函数,当0≤t≤100时,话费金额y=20;当t>100时,话费金额y是通话时间t的一次函数,不妨设y=kt+b,且函数经过点(100,20)和(200,40),所以,4020020100bkbk,解得:k=0.2,b=0,所以,y=0.2t,所以,甲公司用户月通话时间不超过100分钟时应付话费金额是20元;当甲公司用户通话100分钟以后,每分钟的通话费为0.2元;2)仔细观察表1,可以知道乙公司每月通话收费y=0.15t+2.5,当0≤t≤100时,甲公司的话费金额y=20;乙公司通话收费y=0.15t+2.5=15+2.5=17.5,所以,李女士如果月通话时间不超过100分钟,她选择乙通迅公司更合算;因为,0.15t+2.5=0.2t,所以,t=500,所以,当通话时间t=500分钟时,选择甲、乙两家公司哪一家都可以;因为,0.15t+2.5>0.2t,所以,t<500,所以,当通话时间100<t<500分钟时,选择甲公司;因为,0.15t+2.5<0.2t,所以,t>500,所以,当通话时间t>500分钟时,选择乙公司;2、三段型分段函数例6如图7,矩形ABCD中,AB=1,AD=2,M是CD的中点,点P在矩形的边上沿A→B→C→M运动,则△APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的()解析:1)、当0≤x≤1,y=21×x×2=x;如图8所示;2)、当1<x≤3,y=1×2-21×21×2-21×(x-1)×1-21×21×(3-x)=x4145;如图9所示;3)当3<x≤3.5,y=21×(27-x)×2=27-x;如图10所示;所以C、D两个选项是错误的,又因为函数y=x4145中的k=-41<0,所以直线整体应该是分布在二、一、四象限,所以选项B也是错误的,所以选A。评析:对于运动型问题,关键是根据题意借助分类的思想用变量x分别出图形的面积。在表示面积时,要注意整体思想的运用。3、四段型分段函数例7、星期天,小强骑自行车到郊外与同学一起游玩,从家出发2小时到达目的地,游玩3小时后按原路以原速返回,小强离家4小时40分钟后,妈妈驾车沿相同路线迎接小强,如图11,是他们离家的路程y(千米)与时间x(时)的函数图像。已知小强骑车的速度为15千米/时,妈妈驾车的速度为60千米/时。(1)小强家与游玩地的距离是多少?(2)妈妈出发多长时间与小强相遇?解析:1)当0≤x≤2,路程y(千米)是时间x(时)的正比例函数,且k=15,所以y=15x;所以,当x=2时,y=2×15=30,所以,小强家与游玩地的距离是30千米。2)当2<x≤5,路程y(千米)是时间x(时)的常数函数,所以y=30;当5<x,路程y(千米)是时间x(时)的一次函数,且k=-15,所以,设y=-15x+b,又图象过点(5,30),所以30=-75+b,所以b=105,所以直线BD的解析式为:y=-15x+105;仔细观察图象,可知道点C的坐标为(314,0),且k=60,所以,设y=60x+b,所以0=280+b,所以b=-280,所以直线CD的解析式为:y=60x-280;设妈妈出发t小时出与小强相遇,所以,60t-280=-15t+105,解得,t=1577,所以,妈妈出发经过:1577-314=157小时与小强相遇。4、五段型分段函数例8、小明同学骑自行车去郊外春游,下图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3)求小明出发多长时间距家12千米?解:(1)由图象可知小明到达离家最远的地方需3小时;此时,他离家30千米(2)设直线CD的解析式为y=k1x+b1,由C(2,15)、D(3,30),代入得:y=15x-15(2≤x≤3)当x=2.5时,y=22.5(千米)答:出发两个半小时,小明离家22.5千米.(3)设过E、F两点的直线解析式为y=k2x+b2,由E(4,30)、F(6,0),代入得y=-15x+90,(4≤x≤6),过A、B两点的直线解析为y=k3x,∵B(1,15)∴y=15x