精编WORD文档下载可编缉打印下载文档,远离加班熬夜第四版运筹学部分课后习题解答篇一:运筹学基础及应用第四版胡运权主编课后练习答案运筹学基础及应用习题解答习题一P461.1(a)41的所有?x1,x2?,此时目标函数值2该问题有无穷多最优解,即满足4x1?6x2?6且0?x2?z?3。(b)用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解。1.2(a)约束方程组的系数矩阵?1236300???A??81?4020??30000?1???最优解x??0,10,0,7,0,0?T。(b)约束方程组的系数矩阵?1234?A???2212?????211?最优解x??,0,,0?。5??5精编WORD文档下载可编缉打印下载文档,远离加班熬夜T1.3(a)(1)图解法最优解即为??3x1?4x2?935?3?的解x??1,?,最大值z?5x?2x?822??2?1(2)单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式maxz?10x1?5x2?0x3?0x4?3x?4x2?x3?9s.t.?1?5x1?2x2?x4?8则P3,P4组成一个基。令x1?x2?0得基可行解x??0,0,9,8?,由此列出初始单纯形表?1??2。??min?,???89??53?85?2?0,??min??218?3,??142?2?335?1,?2?0,表明已找到问题最优解x1?1,x2?,x3?0,x4?0。最大值z*?22精编WORD文档下载可编缉打印下载文档,远离加班熬夜(b)(1)图解法6x1?2x2x1?x2?最优解即为??6x1?2x2?2417?73?的解x??,?,最大值z?2?22??x1?x2?5(2)单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式maxz?2x1?x2?0x3?0x4?0x5?5x2?x3?15?s.t.?6x1?2x2?x4?24?x?x?x?5?125则P3,P4,P5组成一个基。令x1?x2?0得基可行解x??0,0,15,24,5?,由此列出初始单纯形表?1??2。??min??,??245?,??461?3?3?15,24,??2?2?5?2?0,??min?新的单纯形表为精编WORD文档下载可编缉打印下载文档,远离加班熬夜篇二:运筹学习题及答案运筹学习题答案第一章(39页)1.1用图解法求解下列线性规划问题,并指出问题是具有唯一最优解、无穷多最优解、无界解还是无可行解。(1)maxz?x1?x25x1+10x2?50x1+x2?1x2?4x1,x2?0(2)minz=x1+1.5x2x1+3x2?3x1+x2?2x1,x2?0(3)maxz=2x1+2x2x1-x2?-1-0.5x1+x2?2x1,x2?0(4)maxz=x1+x2x1-x2?03x1-x2?-3x1,x2?0解:(1)(图略)有唯一可行解,maxz=14(2)(图略)有唯一可行解,minz=9/4(3)(图略)无界解(4)(图略)无可行解1.2将下列线性规划问题变换成标准型,并列出初始单纯形表。精编WORD文档下载可编缉打印下载文档,远离加班熬夜(1)minz=-3x1+4x2-2x3+5x44x1-x2+2x3-x4=-2x1+x2+3x3-x4?14-2x1+3x2-x3+2x4?2x1,x2,x3?0,x4无约束(2)maxs?nmzkpkzk???aikxiki?1k?1??xk?1mik??1(i?1,...,n)xik?0(i=1…n;k=1,…,m)(1)解:设z=-z?,x4=x5-x6,x5,x6?0标准型:Maxz?=3x1-4x2+2x3-5(x5-x6)+0x7+0x8-Mx9-Mx10s.t.-4x1+x2-2x3+x5-x6+x10=2x1+x2+3x3-x5+x6+x7=14-2x1+3x2-x3+2x5-2x6-x8+x9=2精编WORD文档下载可编缉打印下载文档,远离加班熬夜x1,x2,x3,x5,x6,x7,x8,x9,x10?0(2)解:加入人工变量x1,x2,x3,…xn,得:Maxs=(1/pk)?i?1n?k?1m?ikxik-Mx1-Mx2-…..-Mxns.t.xi??xik?1(i=1,2,3…,n)k?1mxik?0,xi?0,(i=1,2,3…n;k=1,2….,m)M是任意正整数1.3在下面的线性规划问题中找出满足约束条件的所有基解。指出哪些是基可行解,并代入目标函数,确定最优解。(1)maxz=2x1+3x2+4x3+7x42x1+3x2-x3-4x4=8x1-2x2+6x3-7x4=-3x1,x2,x3,x4?0(2)maxz=5x1-2x2+3x3-6x4x1+2x2+3x3+4x4=72x1+x2+x3+2x4=3x1x2x3x4?0(1)解:精编WORD文档下载可编缉打印下载文档,远离加班熬夜系数矩阵A是:?23?1?4??1?26?7???令A=(P1,P2,P3,P4)P1与P2线形无关,以(P1,P2)为基,x1,x2为基变量。有2x1+3x2=8+x3+4x4x1-2x2=-3-6x3+7x4令非基变量x3,x4=0解得:x1=1;x2=2基解X(1)=(1,2,0,0)T为可行解z1=8同理,以(P1,P3)为基,基解X(2)=(45/13,0,-14/13,0)T是非可行解;以(P1,P4)为基,基解X(3)=(34/5,0,0,7/5)T是可行解,z3=117/5;以(P2,P3)为基,基解X(4)=(0,45/16,7/16,0)T是可行解,z4=163/16;以(P2,P4)为基,基解X(5)=(0,68/29,0,-7/29)T是非可行解;以(P4,P3)为基,基解X(6)=(0,0,-68/31,-45/31)T是非可行解;最大值为z3=117/5;最优解X(3)=(34/5,0,0,7/5)T。(2)解:系数矩阵A是:?1234??2112???令A=(P1,P2,P3,P4)P1,P2线性无关,以(P1,P2)为基,有:x1+2x2=7-3x3-4x42x1+x2=3-x3-2x4令x3,x4=0得x1=-1/3,x2=11/3精编WORD文档下载可编缉打印下载文档,远离加班熬夜基解X(1)=(-1/3,11/3,0,0)T为非可行解;同理,以(P1,P3)为基,基解X(2)=(2/5,0,11/5,0)T是可行解z2=43/5;以(P1,P4)为基,基解X(3)=(-1/3,0,0,11/6)T是非可行解;以(P2,P3)为基,基解X(4)=(0,2,1,0)T是可行解,z4=-1;以(P4,P3)为基,基解X(6)=(0,0,1,1)T是z6=-3;最大值为z2=43/5;最优解为X(2)=(2/5,0,11/5,0)T。1.4分别用图解法和单纯形法求解下列线性规划问题,并指出单纯形迭代每一步相当于图形的哪一点。(1)maxz=2x1+x23x1+5x2?156x1+2x2?24x1,x2?0(2)maxz=2x1+5x2x1?42x2?123x1+2x2?18x1,x2?0篇三:运筹学基础及应用第四版胡运权主编课后练习答案运筹学基础及应用习题解答习题一P461.1(a)412该问题有无穷多最优解,即满足4x1z?3。精编WORD文档下载可编缉打印下载文档,远离加班熬夜?6x2?6且0?x2?的所有?x1,x2?,此时目标函数值(b)用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解。1.2(a)约束方程组的系数矩阵?12?A??8?3?3106?403000200??0??1??T最优解x??0,10,0,7,0,0?。(b)约束方程组的系数矩阵?1A???2?223精编WORD文档下载可编缉打印下载文档,远离加班熬夜14??2??最优解1.3(a)(1)图解法11??2x??,0,,0?5?5?T。最优解即为??3x1?4x2?9?5x1?2x2?8的解x?3???1,??2?,最大值z?352(2)单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式maxz?10x1?5x2?0x3?0x4?3x1?4x2?x3?9s.t.??5x1?2x2?x4?8则P3,P4组成一个基。令x1?x2?0精编WORD文档下载可编缉打印下载文档,远离加班熬夜得基可行解x??0,0,9,8?,由此列出初始单纯形表?1??2。??min??89?8,???53?5?2?0,??min??218?3,??142?2?新的单纯形表为?1,?2?0,表明已找到问题最优解x1?1,x2?32,x3?0,x4?0。最大值z*?352(b)(1)图解法6x1?2x2x1?x2?最优解即为???6x1?2x2?24x1?x2?5精编WORD文档下载可编缉打印下载文档,远离加班熬夜的解x?73???,??22?,最大值z?172(2)单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式maxz?2x1?x2?0x3?0x4?0x55x2?x3?15??s.t.?6x1?2x2?x4?24?x?x?x?5?125则P3,P4,P5组成一个基。令x1?x2?0得基可行解x??0,0,15,24,5?,由此列出初始单纯形表?1??2。??min??,??245?,??461??15?5,24,?2?0,??min?3?3精编WORD文档下载可编缉打印下载文档,远离加班熬夜??2?2新的单纯形表为