陕西省商洛市商南县富水初级中学2019年中考数学二模试卷(含解析)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2019年陕西省商洛市商南县富水初级中学中考数学二模试卷一.选择题(共10小题,满分30分,每小题3分)1.向北行驶3km,记作+3km,向南行驶2km记作()A.+2kmB.﹣2kmC.+3kmD.﹣3km2.第14届中国(深圳)国际茶产业博览会在深圳会展中心展出一只如图所示的紫砂壶,从不同方向看这只紫砂壶,你认为是从上面看到的效果图是()A.B.C.D.3.下列运算正确的是()A.(﹣a2)3=﹣a5B.a3•a5=a15C.(﹣a2b3)2=a4b6D.3a2﹣2a2=14.在平面直角坐标系中,点A(﹣,0),点B是直线y=x上的动点,当线段AB的长最短时点B的坐标是()A.(﹣,﹣)B.(﹣,﹣)C.(,﹣)D.(0,0)5.如图,直线l1∥l2,被直线l3、l4所截,并且l3⊥l4,∠1=44°,则∠2等于()A.56°B.36°C.44°D.46°6.若关于x的一元一次不等式组有4个整数解,则m的取值范围为()A.﹣3<m<﹣2B.﹣3≤m<﹣2C.3≤m<D.3<m≤7.已知直线l:y=﹣x+1与x轴交于点P,将l绕点P顺时针旋转90°得到直线l′,则直线l′的解析式为()A.B.y=2x﹣1C.D.y=2x﹣48.如图矩形ABCD中,点E是边AD的中点,FE交对角线AC于点F,若△AFE的面积为2,则△BCF的面积等于()A.8B.4C.2D.19.如图,已知半圆的内接四边形ABCD,AB是直径,沿BD翻折,点C的对称点C′恰好落在AB上.若AC′=4,C′B=5,则BD的长是()A.4B.3C.7D.810.已知抛物线y=ax2+bx+c上部分点的横坐标x与纵坐标y的对应值如表:x…﹣10123…y…30﹣1m3…有以下几个结论:①抛物线y=ax2+bx+c的开口向下;②抛物线y=ax2+bx+c的对称轴为直线x=﹣1;③方程ax2+bx+c=0的根为0和2;④当y>0时,x的取值范围是x<0或x>2;其中正确的是()A.①④B.②④C.②③D.③④二.填空题(共4小题,满分12分,每小题3分)11.因式分解:3a3﹣3a=.12.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A'B'C',连接AA′,若∠1=25°,则∠BAA'的度数是.13.在函数y=﹣的图象上有三点(﹣1,y1),(﹣0.25,y2),(3,y3),则函数值y1,y2,y3的大小关系是.14.如图,在平面直角坐标系xOy中,以点P(﹣3,4)为圆心的⊙P与y轴相切,A是x轴上一动点,过A点的直线与⊙P相切于点B,以AB为边作正方形ABCD,则正方形ABCD面积的最小值为.三.解答题(共11小题,满分78分)15.计算:4cos30°﹣+20180+|1﹣|16.解方程:+﹣=1.17.“三等分任意角”是数学史上一个著名问题,经过无数人探索,现在已经确信,仅用圆规直尺是不可能做出的.在探索过程中,我们发现,可以利用一些特殊的图形,把一个任意角三等分.如图:在∠MAN的边上任取一点B,过点B作BC⊥AN于点C,并作BC的垂线BF,连接AF,E是AF上一点,当AB=BE=EF时,有∠FAN=∠MAN,请你证明.18.九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必选且只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.根据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了名学生,m的值是.(2)请根据以上信息直接在答题卡上补全条形统计图;(3)扇形统计图中,“数学”所对应的圆心角度数是度;(4)若该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.19.如图,正方形ABCD中,M为BC上的点,E是AD的延长线的点,且AE=AM,过E作EF⊥AM垂足为F,EF交DC于点N.(1)求证:AF=BM;(2)若AB=12,AF=5,求DE的长.20.王亮同学要测量广场内被湖水隔开的两颗大树A和B之间的距离,它在A处测得B在A的北偏西30°方向,他从A处出发向北偏东15°方向走了200米到达C处,这是测得大树B在C的北偏西60°的方向.(1)求∠ABC的度数;(2)求两颗大树A和B之间的距离(结果精确到1米)(参考数据:≈1.414,,1.732,≈2.449)21.五一期间,小刚一家早晨7:30点出发乘车去离家300公里的某景区旅游,他们离家的距离y(km)与汽车行驶时间x(h)之间的函数图象如图所示.(1)求线段AB对应的函数解析式;(2)小刚一家上午10时离目的地多远?22.小颖为班级联欢会设计了“配紫色”游戏:如图是两个可以自由转动的转盘,每个转盘被分成了面积相等的三个扇形.游戏者同时转动两个转盘,如果一个转盘转出红色,另一个转盘转出了蓝色,那么就配成紫色.(1)请你利用画树状图或者列表的方法计算配成紫色的概率.(2)小红和小亮参加这个游戏,并约定配成紫色小红赢,两个转盘转出同种颜色,小亮赢.这个约定对双方公平吗?请说明理由.23.已知:如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交于点D,E,且∠CBD=∠A.(1)判断直线BD与⊙O的位置关系,并证明你的结论;(2)若AD:AO=8:5,BC=2,求BD的长.24.如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.25.有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD,MF,若BD=16cm,∠ADB=30°.(1)试探究线段BD与线段MF的数量关系和位置关系,并说明理由;(2)把△BCD与△MEF剪去,将△ABD绕点A顺时针旋转得△AB1D1,边AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求β的度数;(3)若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离.2019年陕西省商洛市商南县富水初级中学中考数学二模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据正数和负数表示相反意义的量,向北记为正,可得答案.【解答】解:向北行驶3km,记作+3km,向南行驶2km记作﹣2km,故选:B.【点评】本题考查了正数和负数,相反意义的量用正数和负数表示.2.【分析】俯视图就是从物体的上面看物体,从而得到的图形.【解答】解:由立体图形可得其俯视图为:.故选:C.【点评】此题主要考查了简单组合体的三视图,正确把握三视图的观察角度是解题关键.3.【分析】直接利用积的乘方运算法则以及同底数幂的乘除运算法则、合并同类项法则分别计算得出答案.【解答】解:A、(﹣a2)3=﹣a6,故此选项错误;B、a3•a5=a8,故此选项错误;C、(﹣a2b3)2=a4b6,正确;D、3a2﹣2a2=a2,故此选项错误;故选:C.【点评】此题主要考查了积的乘方运算以及同底数幂的乘除运算、合并同类项,正确掌握相关运算法则是解题关键.4.【分析】过点A作AD⊥OB于点D,过点D作DE⊥x轴于点E,先根据垂线段最短得出当点B与点D重合时线段AB最短,再根据直线OB的解析式为y=x得出△AOD是等腰直角三角形,故DE=OA=,由此可得出结论.【解答】解:过点A作AD⊥OB于点D,过点D作DE⊥x轴于点E,∵垂线段最短,∴当点B与点D重合时线段AB最短.∵直线OB的解析式为y=x,∴△AOD是等腰直角三角形,∴DE=OA=,∴D(﹣,﹣).故选:B.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5.【分析】依据l1∥l2,即可得到∠1=∠3=44°,再根据l3⊥l4,可得∠2=90°﹣44°=46°.【解答】解:∵l1∥l2,∴∠1=∠3=44°,又∵l3⊥l4,∴∠2=90°﹣44°=46°,故选:D.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.6.【分析】先求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知得出答案即可.【解答】解:解不等式x﹣2<0,得:x<2,解不等式x+m≥2,得:x≥4﹣2m,∵不等式组有4个整数解,∴﹣3<4﹣2m≤﹣2,解得:3≤m<,故选:C.【点评】本题主要考查的是不等式的解集,由不等式无解判断出2与4﹣2m的大小关系是解题的关键.7.【分析】设直线l'的解析式为y=kx+b,根据直线l'⊥直线l,即可得到k=2,再根据P(2,0),即可得出直线l'的解析式为y=2x﹣4.【解答】解:设直线l'的解析式为y=kx+b,∵直线l'⊥直线l,∴﹣×k=﹣1,即k=2,在直线l:y=﹣x+1中,令y=0,则x=2,∴P(2,0),代入y=2x+b,可得0=4+b,解得b=﹣4,∴直线l'的解析式为y=2x﹣4,故选:D.【点评】本题考查了利用待定系数法求直线的解析式:先设直线的解析式为y=kx+b,然后把已知点的坐标代入得到关于k、b的方程组,解方程组即可.8.【分析】根据矩形的性质得出AD=BC,AD∥BC,求出BC=AD=2AE,求出△AFE∽△CFB,根据相似三角形的性质即可解决问题.【解答】解:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵点E是边AD的中点,∴BC=AD=2AE,∵AD∥BC,∴△AFE∽△CFB,∴=()2=()2=.∵△AFE的面积为2,∴△BCF的面积为8故选:A.【点评】本题考查了矩形的性质,相似三角形的性质和判定的应用,能推出△AFE∽△CFB是解此题的关键,注意:相似三角形的面积比等于相似比的平方.9.【分析】作DE⊥AB于E,连接DC′,根据折叠的性质得到CD=C′D,∠CBD=∠C′BD,根据等腰三角形的性质得到AE=EC′=2,根据射影定理,勾股定理计算.【解答】解:作DE⊥AB于E,连接DC′,由折叠的性质可知,CD=C′D,∠CBD=∠C′BD,∴DA=DC,∴AD=C′D,又DE⊥AB,∴AE=EC′=2,∴EB=7,由射影定理得,DE2=AE•EB=14,在Rt△DEB中,BD2=DE2+BE2=63,∴BD=3,故选:B.【点评】本题考查的是垂径定理,翻折变换的性质,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.10.【分析】根据表格中的x、y的对应值,利用待定系数法求出函数解析式,再根据二次函数的图形与性质求解可得.【解答】解:设抛物线的解析式为y=ax2+bx+c,将(﹣1,3)、(0,0)、(3,3)代入得:,解得:,∴抛物线的解析式为y=x2﹣2x=x(x﹣2)=(x﹣1)2﹣1,由a=1>0知抛物线的开口向上,故①错误;抛物线的对称轴为直线x=1,故②错误;当y=0时,x(x﹣2)=0,解得x=0或x=2,∴方程ax2+bx+c=0的根为0和2,故③正确;当y>0时,x(x﹣2)>0,解得x<0或x>2,故④正确;故选:D.【点评】本题主要考查抛物线与x轴的交点,解题的关键是熟练掌握待定系数法求函数解析式及二次函数的图象和性质.二.填空题(共4小题,满分12分,每小题3分)11.【分析】首先提取公因式3a,进而利用平方差公式分解因式得出答案.【解答】解:原式=3a(a2﹣1)=3a(a+1)(a﹣1).故答案为:3a(a+1)(a﹣1).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.12.【分析】根据旋转的性质可得AC=A′C,然后判断出△ACA

1 / 22
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功