永济中学2018—2019学年高三年级第一学期10月月考数学试题(理)第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分。每小题只有一个选项最符合题目要求。)1.设全集,0,222xxURAxBxx,则图中阴影部分表示的集合为()A.|1xxB.|12xxC.{|01}xxD.|1xx2.命题p:若ab,则22,cRacbc;命题q:00x,使得00ln1xx,则下列命题中为真命题的是()A.pqB.()pqC.()pqD.()()pq3.曲线33yxx在点1,3处的切线方程为()A.210xyB.210xyC.210xyD.210xy4.已知na为等差数列,其公差为2,且7a是3a与9a的等比中项,nS为na的前n项和,nN,则10S的值为()A.﹣110B.﹣90C.90D.1105.已知函数25,1(),1xaxxfxaxx为R上的单调递减函数,则实数a的取值范围()A.0,?B.[2,3]C.0,2D.2,6.在ABC中,552cosC,1BC,5AC,则AB()A.24B.30C.29D.527.已知不共线的两个向量,ab满足2ab且2aab,则b()A.2B.2C.22D.48.已知函数|1|,0()1,01xxfxxx,若函数(x)yf与函数ya的三个交点,且交点横坐标分别为123,,xxx,且123xxx,则312()xxx的取值范围是()A.2,1B.11,2C.2,1D.11,29.在ABC中,22ACAB,120BAC, O是BC的中点,M是AO上一点,且3AOMO,则MBMC的值是()A.5 3B.56C.73D.7610.已知函数(x)yf是R上的偶函数,对于xR都有(6)()(3)fxfxf成立,且(4)2f,当12,0,3xx,且12xx时,都有1212()()0fxfxxx.则给出下列命题:①(2008)2f;②函数(x)yf图象的一条对称轴为6x;③函数(x)yf在9,6上为减函数;④方程()0fx在9,9上有4个根;其中正确的命题个数为()A.1B.2C.3D.4高三理数(第1页,共4页)高三理数(第2页,共4页)11.已知函数()yfx对任意的(,)22x满足'()cos()sin0fxxfxx(其中'()fx是函数()fx的导函数),则下列不等式成立的是()A.2()()34ffB.2()()34ffC.(0)2()3ffD.(0)2()4ff12.设等差数列na的前n项和为nS,且满足17 0S,18 0S,则11Sa,22Sa,…,1515Sa中最大的项为()A.77SaB.88SaC.99SaD.1010Sa第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.设向量1,ma,2,1b,且222baba,则m。14.函数2log2axxya在区间1,上是减函数,则a的取值范围是。15.等差数列na的前n项和为nS,已知010S,2515S,则nnS的最小值为。16.已知函数xxxf2sinsin2)(,则)(xf的最小值是。三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程和演算步骤)17.(本小题满分10分)已知2sin2)(xxf(0)的图像关于点0,35对称,在ABC中,角A、B、C的对边分别是a、b、c,且3)(Bf.(1)求角B;(2)若CbcBcbAasin2sin2sin2,试判断ABC的形状.18.(本小题满分12分)在ABC中,3B,点D在边AB上,1BD,且DCDA。(1)若BCD的面积为3,求CD;(2)若3AC,求DCA。19.(本小题满分12分)已知数列na的前n项和nnaS1,其中0。(1)证明na是等比数列,并求其通项公式;(2)若32315S,求。20.(本小题满分12分)已知数列na的前n项和nnSn832,nb是等差数列,且1nnnbba。(1)求数列nb的通项公式;(2)令nnnnnbac211,求数列nc的前n项和nT。21.(本小题满分12分)已知函数21ln)(xaxxf的单调递增区间是251,0。(1)求实数a的值;(2)证明:当1x时,1)(xxf。22.(本小题满分12分)已知函数xxmxxfln12)(2(Rm)。(1)当21m时,若函数xaxfxgln1)()(恰有一个零点,求a的取值范围;(2)当1x时,21)(xmxf恒成立,求m的取值范围。高三理数(第1页,共4页)高三理数(第2页,共4页)高三理数10月月考答案一、选择题(5x12=60分)1—5BCADB6—10ABAAD11—12AC二、填空题(5x4=20分)13、214、3,215、4916、323三、解答题17、解析:(1)因为2sin2xxf的图像关于点0,35对称,所以,065sin235f又,0所以6······················3分3)(Bf,362sin2B。362B或32,得3B或(舍去)······························5分(2)CbcBcbAasin)2(sin2sin2,由正弦定理得cbcbcba)2()2(22,即bccba222。由余弦定理得2122cos222bcbcbcacbA,3A。又3B,所以ABC为等边三角形································10分18、解:(1)由题意得BCSBCD213sinBBD,3B,1BD,所以4BC······································3分在BCD中,由余弦定理得13cos2222BBCBDBCBDCD,所以13CD·························································6分(2)在ADC中,ACDcos23在BDC中,ABDBCD232sinsin,所以AA232sincos,即AA232sin2sin所以AA2322得18A。或AA2322,得6A,所以18DCA或6。················12分19、解析(1)由题意得1111aSa,故1,111a,01a···············································2分由nnaS1,111nnaS得nnnaaa11,即nnaa11。由01a,0得0na,所以11nnaa。因此na是首项为11,公比为1的等比数列,于是1111nna··················································6分(2)由(1)得nnS11由32315S得1323115,即32115,解得1············································12分20、解析(1)由题意得知,当2n时,561nSSannn。当1n时,1111Sa,所以56nan。设数列nb的公差为d。由,,322211bbabba即,3217,21111dbdb可解得41b,3d。所以13nbn。(2)由(1)知112)1(33366nnnnnnnc,又nncccT21,得1322123223nnnT,24321232232nnnT,两式作差,得2143221222223nnnnT=2212121443nnn=223nn。所以223nnnT。21、解析(1)xaxaxxaxxf122121)(2',,0x。·············1分依题意,由0'xf得012202axaxx,其解集为251,0,···············3分所以251是方程01222axax的根,··································5分所以01251225122aa,解得21a···························6分(2)令1)1(21ln)1()()(2xxxxxfxF,,0x,·············8分则有xxxF21)('。当,1x时,0)('xF,所以)(xF在,1上单调递减,故当1x时,0)1()(FxF,即当1x时,1)(xxf···············································12分22、解:由题知)(xg定义域为,0,当21m时,xaxxgln)(2·····1分所以xaxxxaxg222)('·······2分①当0a时,2)(xxg,0x时无零点。··································3分②当0a时,0)('xg,)(xg在,0内单调递增,取aex10,则01211aaeeg又因为1)1(g,所以0)1()(0gxg,所以)(xg由1个零点。··················4分③当0a时,令0)('xg,得2ax,当20ax时,0)('xg所以)(xg在2,0a单调递减。··················5分要使)(xg恰有一个零点,则022ln2aaaag,ea2。············6分(2)令xxmmxxmxfxhln)12()1()()(22,························7分由题意,1x时,0)(xh恒成立,xmxxxmmxxh1211)12(2)(',·8分若210m,则当,21mx时,0)('xh恒成立,所以)(xh在,21m内是增函数,且)(xh,21mh,所以不符合题意。····9分若21m,则当,1x时,0)('xh恒成立,所以)(xh在,1内为增函数,且),1()(hxh,所以不符合题意。···············10分若0m,则当