山西省太原市2018-2019学年高一数学上学期期中试题(含解析)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

山西省太原市2018-2019学年高一数学上学期期中试题(含解析)一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合,,则()A.B.C.D.【答案】A【解析】【分析】画数轴结合子集的概念即可得到答案.【详解】∵集合,,∴.故选:A.【点睛】本题考查集合间的基本关系.2.函数的定义域为()A.B.C.D.【答案】B【解析】【分析】根据二次根式的性质以及分母不为0,求出函数的定义域即可.【详解】要使函数有意义,只需x>0,故选:B.【点睛】本题考查了求函数的定义域问题,考查二次根式的性质.3.若集合,,则()A.B.C.D.【答案】C【解析】【分析】求出集合A和B,取两集合的交集即可.【详解】由集合A得:(x-5)(x+1)=0,解得:x=5或x=-1,∴集合A={-1,5},由集合B解得:x=1或x=-1,∴集合B={-1,1},则A∩B={-1}.故选:C.【点睛】本题考查集合的交集运算.4.已知函数,且,则()A.4B.2C.D.【答案】A【解析】【分析】利用函数解析式得log2a=2,即可得a的值.【详解】根据题意,f(a)=2,则log2a=2,解可得:a=4,故选:A.【点睛】本题考查函数值的计算,关键是掌握函数解析式的定义.5.已知集合,若B∪A=A,则满足该条件的集合的个数是()A.1B.2C.3D.4【答案】D【解析】【分析】由题意得B⊆A,即可求出满足该条件的集合B的个数.【详解】∵B∪A=A,∴B⊆A,集合A={0,1},∴满足该条件的集合B的个数为:22=4.故选:D.【点睛】本题考查满足该条件的集合的个数的求法,考查并集、子集定义等基础知识.6.下列函数中,既是偶函数又在上是增函数的是()A.B.C.D.【答案】C【解析】【分析】根据题意,依次分析选项中函数的单调性以及奇偶性,即可得答案.【详解】根据题意,依次分析选项:对于A,,函数为偶函数,由指函数的性质可知在上为减函数,不符合题意;对于B,f(-x)=-f(x),函数为奇函数,不符合题意;对于C,f(-x)=f(x),函数为偶函数,由对数函数的性质可知在(0,+∞)上是增函数,符合题意;对于D,定义域不关于原点对称,不具有奇偶性,不符合题意;故选:C.【点睛】本题考查函数的单调性、奇偶性和指对函数图像的性质.7.已知,,,则()A.B.C.D.【答案】C【解析】【分析】利用指数函数与对数函数的单调性即可得出.【详解】由指数函数的性质可知∈(0,1),>1,由对数函数的性质可知<0,则c<a<b.故选:C【点睛】本题考查了指数函数与对数函数的图像的性质.8.已知全集,集合和关系的韦恩图如图所示,则阴影部分所示集合中的元素共有()A.3个B.4个C.5个D.无穷多个【答案】B【解析】试题分析:因,故或,图中阴影部分表示的集合为,故该集合中有个元素.应选B.考点:补集交集的概念及运算.9.已知集合中有且只有一个元素,那么实数的取值集合是()A.B.C.D.【答案】B【解析】【分析】由题意分方程为一次方程和二次方程两种情况分别求解.【详解】由集合中有且只有一个元素,得a=0或,∴实数a的取值集合是{0,}故选:B.【点睛】本题考查实数的取值集合的求法,考查单元素集的性质等基础知识.10.已知函数,则函数的图象()A.关于轴对称B.关于轴对称C.关于直线对称D.关于原点对称【答案】D【解析】【分析】先根据f(-x)=-f(x),可得f(x)为奇函数,故f(x)的图象关于原点对称.【详解】∵,∴=-=-f(x),∴f(x)为奇函数,故f(x)的图象关于原点对称,故选:D.【点睛】本题主要考查函数的奇偶性,奇函数图像关于原点对称,偶函数图像关于y轴对称.11.已知函数,若对任意的实数都存在,使得成立,则()A.1B.2C.3D.4【答案】A【解析】【分析】分别讨论x>1和x≤1时,由函数的单调性可得f(x)的最大值为f(1)=2,由题意可得所求值.【详解】函数,可得x>1时,f(x)递减,可得f(x)∈(0,2);x≤1时,f(x)=递增,可得f(x)≤2,且x=1时,f(x)取得最大值2,由对任意的实数x都存在,使得成立,可得=1,故选:A.【点睛】本题考查分段函数的单调性和最值求法,考查运算能力和推理能力.12.已知函数的图象如图所示,则函数的图象可能是()A.B.C.D.【答案】B【解析】【分析】利用f(x)的图象可推出a<0,b>0,c<0,然后即可判断g(x)的图象.【详解】由f(x)的图象可知,f(0)>0,∴b>0,又由图知,得c<0,且x>c时,f(x)=<0,所以a<0,故二次函数g(x)=ax2+bx-c的图象为B.故选:B.【点睛】本题考查了函数的图象的识别,经常从函数的奇偶性,单调性和特殊点的函数值来考虑.二、填空题:本大题共4小题,每小题3分,共12分,把答案填在题中横线上13.已知全集,集合,则_____.【答案】【解析】【分析】由补集的运算即可求出CUA.【详解】因为全集U={1,2,3,4,5},集合A={2,4},所以CUA={3,5},故答案为:{3,5}.【点睛】本题考查补集及其运算.14.函数在上的最大值为_____.【答案】【解析】【分析】由指数函数的性质可得到函数的单调性,从而可得到函数的最大值.【详解】由指数函数的性质可知y=2x在R上为增函数,则函数y=2x-1在[1,3]上为增函数,则其在[1,3]上的最大值为f(3)=23-1=7,故答案为:7.【点睛】本题考查指数函数的单调性以及应用,涉及函数的最值,属于基础题.15.已知函数是定义在上的奇函数,当时,,那么_____.【答案】【解析】【分析】根据奇函数f(0)=0,求出m的值,利用f(-1)=-f(1)即可得到答案.【详解】∵f(x)是定义在R上的奇函数,∴f(0)=0,∴m=-1,,∴f(-1)=-f(1)=-(-1+)=故答案为:【点睛】本题考查函数的奇偶性,根据奇偶性的定义求出m值,是解决该类问题的关键.16.已知,函数,若函数的图象与轴恰有两交点,则实数的取值范围是_____.【答案】【解析】【分析】利用分段函数转化求解不等式的解集即可;利用函数的图象,通过函数的零点得到不等式求解即可.【详解】函数的草图如图:函数f(x)恰有2个零点,则1<λ≤3或λ>4.故答案为:(1,3]∪(4,+∞).【点睛】本题考查函数与方程的应用,考查数形结合以及函数的零点个数的判断,考查发现问题解决问题的能力.三、解答題:本大题共3小题共52分.解答应写出文字说明证明过程或演算步骤17.已知集合,,若,求实数,的值.【答案】或.【解析】【分析】利用集合相等的定义列出方程组,再结合集合中元素的互异性质能求出实数a,b的值.【详解】解:由已知,得(1)或.(2)解(1)得或,解(2)得或,又由集合中元素的互异性得或.【点睛】本题考查集合相等的的定义,同时要注意集合中元素的互异性.18.(1)已知,求的值;(2)已知,求的值.【答案】(1);(2).【解析】【分析】(1)由对数式可得x6=8,即可解得x.(2)先利用对数的四则运算得1+log3x=,然后利用对数相等解得x.【详解】解:(1)因为,所以,所以.(2)因为,所以,所以,解得.【点睛】本题考查了指数与对数的互化,指数与对数的四则运算性质.19.已知幂函数的图象经过点.(1)求函数的解析式;(2)设函数,求函数在区间上的值域.【答案】(1);(2).【解析】【分析】(1)设出幂函数解析式,代入点的坐标,即可求出函数的解析式(2)求出g(x)的解析式,根据函数的单调性求出函数的值域即可.【详解】解:(1)设,则,则,所以.(2)因为,且函数在区间上为增函数,所以时,有最大值-1,时,有最小值-3.所以函数在上的值域为.【点睛】本题考查了幂函数的定义,考查函数的值域以及函数的单调性问题.20.(A)已知函数在区间上有最小值.(1)求实数的取值范围;(2)当时,设函数,证明函数在区间上为增函数.【答案】(1);(2)详见解析.【解析】【分析】(1)由题意知二次函数的对称轴在区间内,可得a的取值范围;(2)求得g(x)的解析式,运用函数单调性的定义进行证明.【详解】(A)(1)函数的图象开口向上,对称轴为,则函数在上为减函数,在上为增函数,所以,即实数的取值范围是.(2)函数,设,为上任意两个实数,且,则,由,得,,即,,所以函数在区间上为增函数.【点睛】本题考查二次函数的图象和性质,考查函数单调性的证明,用定义法证明单调性的具体步骤:作差、变形和定符号、下结论等..21.(B)已知函数,的图象如图所示点,在函数的图象上,点在函数图象上,且线段平行于轴.(1)证明:;(2)若为以角为直角的等腰直角三角形,求点的坐标.说明:请同学们在(A)、(B)两个小题中任选一题作答【答案】(1)详见解析;(2).【解析】【分析】(1)由AC∥y轴,可得x1=x3.代入函数关系进而证明结论.(2)由△ABC为以角C为直角的等腰直角三角形,可得|AC|=|BC|,y2=y3.可得x3-x2=,.化简即可得出.【详解】(B)证明(1)因为线段平行于轴,所以,又,,则.(2)由等腰直角三角形,和,且平行于轴,所以,且,又,,则,解得,所以,所以点的坐标为.【点睛】本题考查了对数运算性质、等腰直角三角形的性质、平行线的性质.22.已知函数,.(1)若函数为奇函数,求实数的值.(2)若对任意的都有成立,求实数的取值范围.【答案】(I)(II)【解析】试题分析:(1)已知函数为奇函数,由,求得的值;(2)恒成立问题通常是求最值,将原不等式整理为对恒成立,进而求在上的最小值,得到结果.试题解析:(1)因为是奇函数,所以,即所以对一切恒成立,所以.(2)因为,均有即成立,所以对恒成立,所以,因为在上单调递增,所以,所以.10分考点:1.奇函数的特点;2.函数恒成立.3.求最值.23.已知函数是定义在上的奇函数,且时,.(1)求函数的解析式并在如图所示的坐标系中作出函数的图象;(2)若对任意的有恒成立,求实数的最小值.【答案】(1)详见解析;(2).【解析】【分析】(1)根据函数y=f(x)是定义在R上的奇函数,且x≥0时,f(x)=|x-2|-2.利用奇函数的定义可得解析式;(2)根据f(x)的图象即可求实数a的最小值.【详解】(B)(1)当时,,,又函数是定义在上的奇函数,则有,则有,所以.图象如图所示(2)函数的图象是由函数的图象向右平移个长度单位得到,由(1)中的图象可知,只要把函数的图象至少向右平移8个长度单位就满足,所以实数的最小值为8.【点睛】本题考查了函数的奇偶性和单调性的性质和函数图象应用.

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功