2021年7月高等数学基础形成性考核册答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

精编WORD文档下载可编缉打印下载文档,远离加班熬夜2021年7月高等数学基础形成性考核册答案篇一:高等数学基础形成性考核册及答案高等数学基础第一次作业第1章函数第2章极限与连续(一)单项选择题⒈下列各函数对中,(C)中的两个函数相等.2A.f(x)?(x),g(x)?xB.f(x)?x2,g(x)?xx2?1C.f(x)?lnx,g(x)?3lnxD.f(x)?x?1,g(x)?x?1⒉设函数f(x)的定义域为(??,??),则函数f(x)?f(?x)的图形关于(C)对称.3A.坐标原点B.x轴C.y轴D.y?x⒊下列函数中为奇函数是(B).A.y?ln(1?x)B.y?xcosx2ax?a?xC.y?D.y?ln(1?x)2⒋下列函数中为基本初等函数是(C).A.y?x?1B.y??xC.y?x2D.y????1,x?01,x?0?⒌下列极限存计算不正确的是(D).精编WORD文档下载可编缉打印下载文档,远离加班熬夜x2?1B.limln(1?x)?0A.lim2x?0x??x?2sinx1C.lim?0D.limxsin?0x??x??xx⒍当x?0时,变量(C)是无穷小量.1sinxA.B.xx1C.xsinD.ln(x?2)x⒎若函数f(x)在点x0满足(A),则f(x)在点x0连续。A.limf(x)?f(x0)B.f(x)在点x0的某个邻域内有定义x?x0C.lim?f(x)?f(x0)D.lim?f(x)?lim?f(x)x?x0x?x0x?x0(二)填空题x2?9?ln(1?x)的定义域是.⒈函数f(x)?x?322⒉已知函数f(x?1)?x?x,则f(x)?1x1/2⒊lim(1?.)?x??2x1?x?⒋若函数f(x)??(1?x),x?0,在x?0处连续,则k?e.?x?0?x?k,?x?1,x?0⒌函数y??的间断点是.?sinx,x?0⒍若limf(x)?A,则当x?x0时,f(x)?A称为.x?x0(三)计算题⒈设函数?ex,f(x)???x,⒉求函数y?lglgx?0x?0求:f(?2),f(0),f(1).解:f(-2)=-2,f(0)=0,f(1)=e2x?1的定义域.x精编WORD文档下载可编缉打印下载文档,远离加班熬夜2x?1解:由?0解得x<0或x>1/2,函数定义域为(-∞,0)∪(1/2,+∞)x⒊在半径为R的半圆内内接一梯形,试将梯形的面积表示成其高的函数.解:如图梯形面积A=(R+b)h,其中b?22∴R2?h2A?(R?R?h)hsin3x3sin3x?3lim?lim⒋求x?0sin2xx?02sin2x22xx2?1x?1lim?lim(x?1)??2x??1sin(x?1)x??1sin(x?1)⒌求⒍求⒎求.⒏求⒐求tan3xsin3xlim?lim3cos3x?3x?0x?0x3x?x2?1(?x2?1)(?x2?1)lim?limx?0x?0sinx(?x2?1)sinxx?lim?lim?022x?0x?0(?x?1)sinx?x?1sinxx?1xx?3?4x?4xlim()?lim()?lim(1?)x??x?3x??x??x?3x?3x?3(1?x2)?1x?4?4?4[(1?)]2x?6x?8(x?2)(x?4)2?e?4limlim?x?4x2?5x?4x?x?4(x?1)(x??4)33(1?)⒑设函数x?3?(x?2)2,x?1?f(x)??x,?1?x?1讨论f(x)的连续性,并写出其连续区间.?x?1,x??1?x?1解:x?1lim?f(x)?(1?2)2?1?lim?f(x)?1精编WORD文档下载可编缉打印下载文档,远离加班熬夜limf(x)?1?f(1)x?1limf(x)??1?limf(x)??1?1?0x??1?x??1?∴函数在x=1处连续x??1limf(x)不存在,∴函数在x=-1处不连续高等数学基础第二次作业第3章导数与微分(一)单项选择题f(x)f(x)存在,则lim?(B).x?0x?0xxA.f(0)B.f?(0)C.f?(x)D.0f(x0?2h)?f(x0)⒉设f(x)在x0可导,则lim?(D).h?02hA.?2f?(x0)B.f?(x0)C.2f?(x0)D.?f?(x0)⒈设f(0)?0且极限limf(1??x)?f(1)?(A).?x?0?xA.eB.2e11C.eD.e24⒋设f(x)?x(x?1)(x?2)?(x?99),则f?(0)?(D).⒊设f(x)?e,则limxA.99B.?99C.99!D.?99!⒌下列结论中正确的是(C).A.若f(x)在点x0有极限,则在点x0可导.精编WORD文档下载可编缉打印下载文档,远离加班熬夜B.若f(x)在点x0连续,则在点x0可导.C.若f(x)在点x0可导,则在点x0有极限.D.若f(x)在点x0有极限,则在点x0连续.(二)填空题1?2?xsin,x?0⒈设函数f(x)??,则f?(0)?x?x?0?0,df(lnx)x2xx?.⒉设f(e)?e?5e,则dxx?1在(1,2)处的切线斜率是.π⒋曲线f(x)?sinx在(,1)处的切线方程是.42x2x⒌设y?x,则y??⒊曲线f(x)?⒍设y?xlnx,则y???.(三)计算题⒈求下列函数的导数y?:⑴y?(xx?3)exy=(x3/2+3)ex,y'=3/2x1/2ex+(x3/2+3)ex=(3/2x1/2+x3/2+3)ex⑵y?cotx?x2lnxy'=-csc2x+2xlnx+xx2⑶y?y'=(2xlnx-x)/ln2xlnxcosx?2xx32x6⑷y?y'=[(-sinx+2ln2)x-3x(cosx+2)]/xx3⑸y?lnx?x=sinx2⑹y?x4?sinxlnxy'=4x3-cosxlnx-sinx/x1(?2x)sinx?(lnx?x2)cosxsin2xsinx?x2x2x2x⑺y?y'=[(cosx+2x)3-(sinx+x)3ln3]/33x=[cosx+2x-(sinx+x2)ln3]/3x精编WORD文档下载可编缉打印下载文档,远离加班熬夜⑻y?extanx?lnxy'=extanx+exsec2x+1/x=ex(tanx+sec2x)+1/x⒉求下列函数的导数y?:⑴y?e?x⑵y?lncosx32⑶y?xxxy=x7/8y'=(7/8)x-1/8⑷y?x?x⑸y?cos2ex⑹y?cosex⑺y?sinnxcosnxy'=nsinn-1xcosxcosnx-nsinnxsinnx⑻y?5sinx⑼y?esinx⑽y?xx?ex⑾y?xe?ee⒊在下列方程中,y?y(x)是由方程确定的函数,求y?:⑴ycosx?e2y方程对x求导:y'cosx-ysinx=2y'e2y22222xxy'=ysinx/(cosx-2e2y)⑵y?cosylnx方程对x求导:y'=y'(-siny)lnx+(1/x)cosyy'=[(1/x)cosy]/(1+sinylnx)x2⑶2xsiny?方程对x求导:2siny+y'2xcosy=(2xy-x2y')/y2yy'=2(xy–y2siny)/(x2+2xy2cosy)⑷y?x?lny方程对x求导:y'=1+y'/y,y'=y/(y-1)⑸lnx?ey?y2方程对x求导:1/x+y'ey=2yy',y'=1/x(2y-ey)⑹y2?1?exsiny方程对x求导:2yy'=exsiny+y'excosy精编WORD文档下载可编缉打印下载文档,远离加班熬夜y'=exsiny/(2y-excosy)⑺ey?ex?y3方程对x求导:y'ey=ex-3y2y',y'=ex/ey+3y2⑻y?5x?2y方程对x求导:y'=5xln5+y'2yln2,y'=5xln5/(1-2yln2)⒋求下列函数的微分dy:⑴y?cotx?cscxlnxsinx1?x⑶y?arcsin1?x1?x⑷y?1?x⑸y?sin2ex⑵y?⑹y?tanex⒌求下列函数的二阶导数:⑴y?xlnx⑵y?xsinx⑶y?arctanx⑷y?3x(四)证明题设f(x)是可导的奇函数,试证f?(x)是偶函数.证明:由f(x)=-f(-x)求导f'(x)=-f'(-x)(-x)'f'(x)=f'(-x),∴f'(x)是偶函数23篇二:高等数学基础形成性考核册答案篇三:2021年秋电大高等数学基础形成性考核册答案高等数学基础作业1精编WORD文档下载可编缉打印下载文档,远离加班熬夜第1章函数第2章极限与连续(一)单项选择题⒈下列各函数对中,(C)中的两个函数相等.A.f(x)?(x)2,g(x)?xB.f(x)?x2,g(x)?xx2?13C.f(x)?lnx,g(x)?3lnxD.f(x)?x?1,g(x)?x?1⒉设函数f(x)的定义域为(??,??),则函数f(x)?f(?x)的图形关于(C)对称.A.坐标原点B.x轴C.y轴D.y?x⒊下列函数中为奇函数是(B).A.y?ln(1?x2)B.y?xcosxax?a?x1?x)C.y?D.y?ln(2⒋下列函数中为基本初等函数是(C).A.y?x?1B.y??xC.y?x2??1,x?0D.y??1,x?0?⒌下列极限存计算不正确的是(D).x2?1B.limln(1?x)?0A.lim2x?0x??x?2sinx1?0D.limxsin?0C.limx??x??xx⒍当x?0时,变量(C)是无穷小量.精编WORD文档下载可编缉打印下载文档,远离加班熬夜sinx1A.B.xx1C.xsinD.ln(x?2)x⒎若函数f(x)在点x0满足(A),则f(x)在点x0连续。A.limf(x)?f(x0)B.f(x)在点x0的某个邻域内有定义x?x0f(x)?f(x0)D.limf(x)?limf(x)C.lim???x?x0x?x0x?x0(二)填空题x2?9⒈函数f(x)??ln(1?x)的定义域是?x|x?3?x?322⒉已知函数f(x?1)?x?x,则f(x)?1x)?.⒊lim(1?x??2x11x12x?1lim(1?)?lim(1?)2?e2x??x??2x2x1?x?⒋若函数f(x)??(1?x),x?0,在x?0处连续,则k?e.?x?0?x?k,?x?1,x?0⒌函数y??的间断点是x?0sinx,x?0?⒍若limf(x)?A,则当x?x0时,f(x)?A称为x?x0时的无穷小量.x?x0(二)计算题⒈设函数?ex,x?0f(x)???x,x?0求:f(?2),f(0),f(1).解:f??2???2,f?0??0,f?1??e?e12x?1的定义域.x?2x?1??x?0??2x?11?解:y?lg有意义,要求?解得?x?或x?0精编WORD文档下载可编缉打印下载文档,远离加班熬夜x2?x?0????x?0?1??则定义域为?x|x?0或x??2??⒊在半径为R的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端⒉求函数y?lg点在半圆上,试将梯形的面积表示成其高的函数.解:AOhBC设梯形ABCD即为题中要求的梯形,设高为h,即OE=h,下底CD=2R直角三角形AOE中,利用勾股定理得AE?则上底=2AE?h2R??hR?2sin3x⒋求lim.x?0sin2x故S???sin3xsin3x?3xsin3x3133解:lim?lim?lim?=??x?0sin2xx?0x?02122?2x2x2xx2?1⒌求lim.x??1sin(x?1)x2?1(x?1)(x?1)x?1?1?1?lim?lim???2解:limx??1sin(x?1)x??1sin(x?1)x??11x?1tan3x⒍求lim.x?0x精编WORD文档下载可编缉打印下载文档,远离加班熬夜tan3xsin3x1sin3x11?lim?lim??3?1??3?3解:limx?0x?0xxcos3xx?03xcos3x1?x2?1⒎求lim.x?012??解:limx?0x?0x?0sinx?

1 / 14
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功