专题22图形的旋转考点总结【思维导图】【知识要点】知识点一旋转的基础旋转的概念:把一个平面图形绕着平面内某一点O转动一个角度,叫作图形的旋转.点O叫作旋转中心,转动的角叫作旋转角.如图形上的点P经过旋转变化点P,那么这两个点叫作这个旋转的对应点.如图所示,AOB是AOB绕定点O逆时针旋转45得到的,其中点A与点A叫作对应点,线段OB与线段OB叫作对应线段,OAB与OAB叫作对应角,点O叫作旋转中心,AOA(或BOB)的度数叫作旋转的角度.【注意】1.图形的旋转由旋转中心、旋转方向与旋转的角度所决定.2.旋转中心可以是图形内,也可以是图形外。【图形旋转的三要素】旋转中心、旋转方向和旋转角.旋转的特征:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.旋转作图的步骤方法:确定旋转中心、旋转方向、旋转角;找出图形上的关键点;连接图形上的关键点与旋转中心,然后按旋转方向分别将它们旋转一定的角度,得到关键点的对应点;按原图的顺序连接这些对应点,即得旋转后的图形.平移、旋转、轴对称之间的联系:变化后不改变图形的大小和形状,对应线段相等、对应角相等。平移、旋转、轴对称之间的区别:1)变化方式不同:平移:将一个图形沿某个方向移动一定距离。旋转:将一个图形绕一个顶点沿某个方向转一定角度。轴对称:将一个图形沿一条直线对折。2)对应线段、对应角之间的关系不同平移:变化前后对应线段平行(或在一条直线上),对应点连线平行(或在一条直线上),对应角的两边平行(或在一条直线上)、方向一致。旋转:变化前后任意一对对应点与旋转中心的连线所称的角都是旋转角。轴对称:对应线段或延长线如果相交,那么交点在对称轴上。3)确定条件不同平移:距离与方向B'A'45°ABO旋转:旋转的三要素。轴对称:对称轴1.(2018·湖南中考模拟)如图,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为()A.B.C.D.【答案】A【解析】顺时针90°后,AD转到AB边上,所以,选A。2.(2018·沭阳县马厂实验学校中考模拟)将数字“6”旋转180°,得到数字“9”;将数字“9”旋转180°,得到数字“6”.现将数字“69”旋转180°,得到的数字是()A.96B.69C.66D.99【答案】B【详解】解:现将数字“69”旋转180°,得到的数字是:69.故选B.3.(2014·湖南中考真题)下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是()A.B.C.D.【答案】A【解析】试题分析:A、最小旋转角度=3603=120°;B、最小旋转角度=3604=90°;C、最小旋转角度=3602=180°;D、最小旋转角度=3605=72°;综上可得:顺时针旋转120°后,能与原图形完全重合的是A.故选A.考查题型一图形旋转的概念与性质的应用方法1.(2018·甘肃中考真题)如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为()A.5B.23C.7D.29【答案】D【详解】∵把△ADE顺时针旋转△ABF的位置,∴四边形AECF的面积等于正方形ABCD的面积等于25,∴AD=DC=5,∵DE=2,∴Rt△ADE中,2229,AEADDE故选D.2.(2019·天津中考模拟)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°【答案】C【详解】∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选C.3.(2018·天津中考模拟)如图,将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,则∠B的大小为()A.30°B.40°C.50°D.60°【答案】B【解析】∵△ADE是由△ABC绕点A旋转100°得到的,∴∠BAD=100°,AD=AB,∵点D在BC的延长线上,∴∠B=∠ADB=180100402.故选B.4.(2019·天津中考真题)如图,将ABC绕点C顺时针旋转得到DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE.下列结论一定正确的是()A.ACADB.ABEBC.BCDED.AEBC【答案】D【详解】解:∵ABC绕点C顺时针旋转得到DEC,∴AC=CD,BC=EC,∠ACD=∠BCE,∴∠A=∠CDA=180ACD2;∠EBC=∠BEC=180BCE2,∴选项A、C不一定正确∴∠A=∠EBC∴选项D正确.∵∠EBC=∠EBC+∠ABC=∠A+∠ABC=0180-∠ACB不一定等于090,∴选项B不一定正确;故选:D.5.(2011·浙江中考真题)如图,已知△AOB是正三角形,OC⊥OB,OC=OB,将△OAB绕点O按逆时针方向旋转,使得OA与OC重合,得到△OCD,则旋转的角度是()A.150°B.120°C.90°D.60°【答案】A【解析】∠AOC就是旋转角,根据等边三角形的性质,即可求解.解:旋转角∠AOC=∠AOB+∠BOC=60°+90°=150°.故选A.考查题型二确定旋转中心1.(2019·江苏中考模拟)如图,在平面直角坐标系中,其中一个三角形是由另一个三角形绕某点旋转一定的角度得到的,则其旋转中心是()A.(1,0)B.(﹣1,2)C.(0,0)D.(﹣1,1)【答案】B【详解】解:作线段AB,线段CD,作线段AB的垂直平分线MN,线段CD的垂直平分线EF,直线MN交直线EF于点K,点K即为旋转中心.观察图象可知旋转中心K1,2,故选:B.考查题型三通过图形旋转相关知识作图1.(2018·江苏中考真题)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2;(3)△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;(4)△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.【答案】(1)作图见解析;(2)作图见解析;(3)作图见解析;(4)(12,12)【详解】解:(1)根据题意,作图如下图所示:(2)根据题意,作图如下图所示:(3)成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,作它的垂直平分线,或连接A1C1,A2C2的中点的连线为对称轴.(4)成中心对称,对称中心为线段BB2的中点P,坐标是(,).2.(2012·江苏中考模拟)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)画出△ABC关于原点成中心对称的三角形△A′B′C′;(2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点B″的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.【答案】(1)图略;(2)图略,点B″的坐标为(0,﹣6);(3)点D坐标为(﹣7,3)或(3,3)或(﹣5,﹣3).【详解】解:(1)如图所示△A′B′C′即为所求;(2)如图所示,△𝐴′′𝐴′′𝐴′′即为所求;(3)D(-7,3)或(-5,-3)或(3,3).当以BC为对角线时,点D3的坐标为(-5,-3);当以AB为对角线时,点D2的坐标为(-7,3);当以AC为对角线时,点D1坐标为(3,3).考查题型四旋转与全等三角形相结合解题1.(2019·珠海市前山中学中考模拟)如图,在等边△ABC中,点D是AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC.【答案】见解析【解析】∵△ABC是等边三角形,∴AC=BC,∠B=∠ACB=60°,∵线段CD绕点C顺时针旋转60°得到CE,∴CD=CE,∠DCE=60°,∴∠DCE=∠ACB,即∠BCD+∠DCA=∠DCA+∠ACE,∴∠BCD=∠ACE,在△BCD与△ACE中,BCACBCDACEDCEC,∴△BCD≌△ACE,∴∠EAC=∠B=60°,∴∠EAC=∠ACB,∴AE∥BC.2.(2013·湖南中考真题)某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE按如图(1)所示位置放置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:AM=AN;(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.【答案】(1)见解析.(2)见解析.【详解】解:(1)证明:∵用两块完全相同的且含60°角的直角三角板ABC与AFE按如图(1)所示位置放置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),∴AB=AF,∠BAM=∠FAN.∵在△ABM和△AFN中,FANBAM{ABAFBF,∴△ABM≌△AFN(ASA).∴AM=AN.(2)当旋转角α=30°时,四边形ABPF是菱形.理由如下:连接AP,∵∠α=30°,∴∠FAN=30°.∴∠FAB=120°.∵∠B=60°,∴AF∥BP.∴∠F=∠FPC=60°.∴∠FPC=∠B=60°.∴AB∥FP.∴四边形ABPF是平行四边形.∵AB=AF,∴平行四边形ABPF是菱形.3.(2019·山东中考模拟)如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.【答案】(1)见解析;(2)BF=222.【详解】解:(1)由旋转的性质得:△ABC≌△ADE,且AB=AC,∴AE=AD,AC=AB,∠BAC=∠DAE,∴∠BAC+∠BAE=∠DAE+∠BAE,即∠CAE=∠DAB,在△AEC和△ADB中,AEADCAEDABACAB,∴△AEC≌△ADB(SAS);(2)∵四边形ADFC是菱形,且∠BAC=45°,∴∠DBA=∠BAC=45°,由(1)得:AB=AD,∴∠DBA=∠BDA=45°,∴△ABD为直角边为2的等腰直角三角形,∴BD2=2AB2,即BD=22,∴AD=DF=FC=AC=AB=2,∴BF=BD﹣DF=22﹣2.考查题型五图形旋转综合题1.(2015·湖北中考真题)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D。(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长。【答案】(1)证明见解析(2)2-1【详解】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,ACABCAFBAEAFAE△ACF≌△ABEBE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠A