2020年中考数学考点专项突破卷17 图形的变换和投影视图(含解析)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

17.1图形的变换和投影视图精选考点专项突破卷(一)考试范围:图形的变换和投影视图;考试时间:90分钟;总分:120分一、单选题(每小题3分,共30分)1.(2012·辽宁中考真题)下列交通标志是轴对称图形的是()A.B.C.D.2.(2019·江苏中考真题)下列图案中,是中心对称图形的是()A.B.C.D.3.(2019·山东中考真题)如图,点E是正方形ABCD的边DC上一点,把ADE绕点A顺时针旋转90到ABF的位置.若四边形AECF的面积为20,DE=2,则AE的长为()A.4B.25C.6D.264.(2012·湖南中考真题)把等腰△ABC沿底边BC翻折,得到△DBC,那么四边形ABDC()A.是中心对称图形,不是轴对称图形B.是轴对称图形,不是中心对称图形C.既是中心对称图形,又是轴对称图形D.以上都不正确5.(2018·山东中考真题)下列图形中,既是轴对称又是中心对称图形的是()A.B.C.D.6.(2013·福建中考真题)如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.55°B.70°C.125°D.145°7.(2016·内蒙古中考真题)将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,2)D.(1,﹣2)8.(2019·浙江中考真题)如图,下列关于物体的主视图画法正确的是()A.B.C.D.9.(2019·浙江中考真题)某露天舞台如图所示,它的俯视图是()A.B.C.D.10.(2013·四川中考真题)下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.(3)(1)(4)(2)B.(3)(2)(1)(4)C.(3)(4)(1)(2)D.(2)(4)(1)(3)二、填空题(每小题4分,共28分)11.(2015·青海中考真题)若点(a,1)与(﹣2,b)关于原点对称,则ba=_______.12.(2010·江苏中考模拟)如图,在直角坐标系中,已知点A(-3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①,②,③,④,…,则三角形⑩的直角顶点的坐标为______________.13.(2019·山东中考模拟)在平面直角坐标系中,点A的坐标是(-1,2).作点A关于x轴的对称点,得到点A1,再将点A1向下平移4个单位,得到点A2,则点A2的坐标是_________.14.(2018·江苏中考模拟)如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外币A处到达内壁B处的最短距离为.15.(2019·湖北中考模拟)将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=20°,则∠DBC为_____度.16.(2019·吉林中考模拟)如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.17.(2013·吉林中考模拟)如图是一个几何体的三视图,根据图中提供的数据(单位:㎝)可求得这个几何体的体积为.三、解答题一(每小题6分,共18分)18.(2018·吉林中考真题)图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.19.(2012·广东中考真题)如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(直接填写答案)(1)点A关于点O中心对称的点的坐标为;(2)点A1的坐标为;(3)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为.20.(2019·河北中考模拟)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.四、解答题二(每小题8分,共24分)21.(2019·广东初三月考)如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD=2.1m,求灯泡的高.22.(2019·江苏初一期末)如图是由一些棱长都为1cm的小正方体组合成的简单几何体.(1)画该几何体的主视图、左视图和俯视图;(2)如果在这个几何体上再添加一些小正方体,并保持俯视图和左视图不变,最多可以再添加块小正方体.23.(2018·宁夏银川二中中考模拟)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标.五、解答题三(每小题10分,共20分)24.(2016·辽宁中考模拟)(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数.(2)如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN2,ND2,DH2之间的数量关系,并说明理由.(3)在图①中,若EG=4,GF=6,求正方形ABCD的边长.25.(2018·广东中考模拟)(12分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由。17.1图形的变换和投影视图精选考点专项突破卷(一)参考答案1.A【解析】根据轴对称图形与,轴对称图形两部分沿对称轴折叠后可重合。因此,只有选项A符合。故选择A。2.D【解析】根据中心对称图形的定义逐一进行分析判断即可.【详解】A、不是中心对称图形,故不符合题意;B、不是中心对称图形,故不符合题意;C、不是中心对称图形,故不符合题意;D、是中心对称图形,故符合题意,故选D.【点睛】本题考查了中心对称图形的识别,熟练掌握中心对称图形的概念是解题的关键.3.D【解析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【详解】ADE绕点A顺时针旋转90到ABF的位置.四边形AECF的面积等于正方形ABCD的面积等于20,25ADDC,2DE,RtADE中,2226AEADDE故选:D.【点睛】本题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.4.C【解析】∵等腰△ABC沿底边BC翻折,得到△DBC,∴四边形ABDC是菱形.∵菱形既是中心对称图形,又是轴对称图形,∴四边形ABDC既是中心对称图形,又是轴对称图形.故选C.5.B【解析】分析:观察四个选项中的图形,找出既是轴对称图形又是中心对称图形的那个即可得出结论.详解:A是中心对称图形;B既是轴对称图形又是中心对称图形;C是轴对称图形;D既不是轴对称图形又不是中心对称图形.故选B.点睛:本题考查了中心对称图形以及轴对称图形,牢记轴对称及中心对称图形的特点是解题的关键.6.C【解析】试题分析:∵∠B=35°,∠C=90°,∴∠BAC=90°﹣∠B=90°﹣35°=55°.∵点C、A、B1在同一条直线上,∴∠BAB′=180°﹣∠BAC=180°﹣55°=125°.∴旋转角等于125°.故选C.7.C。【解析】根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加。上下平移只改变点的纵坐标,下减上加,因此,将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′的坐标为(-1,2)。关于y轴对称的点的坐标特征是纵坐标不变,横坐标互为相反数,从而点A′(-1,2)关于y轴对称的点的坐标是(1,2)。故选C。8.C【解析】根据主视图是从正面看到的图形,进而得出答案.【详解】主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线,画法正确的是:.故选C.【点睛】本题考查了三视图的知识,关键是找准主视图所看的方向.9.B【解析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:它的俯视图是:故选B.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.10.C【解析】试题分析:根据从早晨到傍晚物体影子的指向是:西-西北-北-东北-东,影长由长变短,再变长,因此,∵(1)为东北,(2)为东,(3)为西,(4)为西北,∴将它们按时间先后顺序排列为(3)(4)(1)(2).故选C.11.12.【解析】试题分析:∵点(a,1)与(﹣2,b)关于原点对称,∴b=﹣1,a=2,∴ba=12=12.故答案为12.考点:关于原点对称的点的坐标.12.(36,0)【解析】试题解析:由原图到图③,相当于向右平移了12个单位长度,三角形④的直角顶点的坐标为(12,0),象这样平移四次直角顶点是(12×4,0),即(48,0),则三角形⑫的直角顶点的坐标为(48,0).13.(-1,-6)【解析】直接利用关于x轴对称点的性质得出点A1坐标,再利用平移的性质得出答案.【详解】∵点A的坐标是(-1,2),作点A关于x轴的对称点,得到点A1,∴A1(-1,-2),∵将点A1向下平移4个单位,得到点A2,∴点A2的坐标是:(-1,-6).故答案为:(-1,-6).【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.14.20cm.【解析】试题分析:将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求:如答图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离.根据勾股定理,得(cm).考点:1.平面展开(最短路径问题);2.轴对称的应用(最短路径问题);3.线段的性质;4.勾股定理.15.70【解析】解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′.又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°.又∵∠ABE=20°,∴∠DBC=70°.故答案为70.点睛:本题考查了角的计算,根据翻折变换的性质,得出三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键.16.6.4【解析】根据平行投影,同一时刻物长与影长的比值固定即可解题.【详解】解:由题可知:1.628树高,解得:树高=6.4米.【点睛】本题考查了投影的实际应用,属于简单题,熟悉投影概念,列比例式是解题关键

1 / 18
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功