2020年中考数学必考考点 专题34 动态问题(含解析)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

专题34动态问题一、动态问题概述1.就运动类型而言,有函数中的动点问题、图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。2.就运动对象而言,几何图形中的动点问题,有点动、线动、面动三大类。3.就图形变化而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等。4.动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。所以说,动态问题是中考数学当中的重中之重,只完全掌握才能拿高分。另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。所以说,动态问题是中考数学当中的重中之重,只完全掌握才能拿高分。二、动点与函数图象问题常见的四种类型:1.三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图2.四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。3.圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象。4.直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象。三、图形运动与函数图象问题常见的三种类型:1.线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。2.多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。3.多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。四、动点问题常见的四种类型:1.三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角专题知识回顾的关系。2.四边形中的动点问题:动点沿四边形的边运动,通过探究构成的新图形与原图形的全等或相似,得出它们的边或角的关系。3.圆中的动点问题:动点沿圆周运动,探究构成的新图形的边角等关系。4.直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,探究是否存在动点构成的三角形是等腰三角形或与已知图形相似等问题。五、解决动态问题一般步骤:(1)用数量来刻画运动过程。因为在不同的运动阶段,同一个量的数学表达方式会发生变化,所以需要分类讨论。有时符合试题要求的情况不止一种,这时也需要分类讨论。(2)画出符合题意的示意图。(3)根据试题的已知条件或者要求列出算式、方程或者数量间的关系式。【例题1】(点动题)如图,在矩形ABCD中,AB=6,BC=8,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为()A.1B.2C.3D.4【答案】D【解析】如图,作点E关于直线CD的对称点E′,连接AE′,交CD于点F.专题典型题考法及解析∵在矩形ABCD中,AB=6,BC=8,点E是BC中点,∴BE=CE=CE′=4.∵AB⊥BC,CD⊥BC,∴CF∥AB,△CE′F∽△BE′A.CE′/BE′=CF/AB4/(8+4)=CF/6解得CF=2.∴DF=CD-CF=6-2=4.热点二:线动【例题2】(线动题)如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒3°的速度旋转,CP与量角器的半圆弧交于点E,第24秒,点E在量角器上对应的读数是________.【答案】144°【解析】连接OE,∵∠ACB=90°,∴A,B,C在以点O为圆心,AB为直径的圆上.∴点E,A,B,C共圆.∵∠ACE=3°×24=72°,∴∠AOE=2∠ACE=144°.∴点E在量角器上对应的读数是144°.【例题3】(面动题)如图Z10-4,将一个边长为2的正方形ABCD和一个长为2,宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C按顺时针旋转至CE′F′D′,旋转角为α.(1)当点D′恰好落在EF边上时,求旋转角α的值;(2)如图Z10-5,G为BC中点,且0°<α<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C按顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角α的值;若不能,请说明理由.【答案】见解析。【解析】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.也考查了正方形、矩形的性质以及三角形全等的判定与性质.(1)∵长方形CEFD绕点C顺时针旋转至CE′F′D′,∴CD′=CD=2.在Rt△CED′中,CD′=2,CE=1,∴∠CD′E=30°.∵CD∥EF,∴∠α=30°.(2)证明:∵G为BC中点,∴CG=1.∴CG=CE.∵长方形CEFD绕点C顺时针旋转至CE′F′D′,∴∠D′CE′=∠DCE=90°,CE=CE′=CG.∴∠GCD′=∠E′CD=90°+α.(3)能.理由如下:∵四边形ABCD为正方形,∴CB=CD.∵CD=CD′,∴△BCD′与△DCD′为腰相等的两个等腰三角形.当∠BCD′=∠DCD′时,△BCD′≌△DCD′.①当△BCD′与△DCD′为钝角三角形时,②当△BCD′与△DCD′为锐角三角形时,综上所述,当旋转角a的值为135°或315°时,△DCD′与△CBD′全等.一.选择题1.(2019•四川省达州市)如图,边长都为4的正方形ABCD和正三角形EFG如图放置,AB与EF在一条直线上,点A与点F重合.现将△EFG沿AB方向以每秒1个单位的速度匀速运动,当点F与B重合时停止.在这个运动过程中,正方形ABCD和△EFG重叠部分的面积S与运动时间t的函数图象大致是()专题典型训练题A.B.C.D.【答案】C.【解析】根据题意和函数图象可以写出各段对应的函数解析式,从而可以判断哪个选项中的图象符合题意,本题得以解决.当0≤t≤2时,S==,即S与t是二次函数关系,有最小值(0,0),开口向上,当2<t≤4时,S=﹣=,即S与t是二次函数关系,开口向下,由上可得,选项C符合题意。2.(2019•山东泰安)如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()A.2B.4C.D.【答案】D.【解析】根据中位线定理可得出点点P的运动轨迹是线段P1P2,再根据垂线段最短可得当BP⊥P1P2时,PB取得最小值;由矩形的性质以及已知的数据即可知BP1⊥P1P2,故BP的最小值为BP1的长,由勾股定理求解即可.如图:当点F与点C重合时,点P在P1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,∴P1P2∥CE且P1P2=CE当点F在EC上除点C、E的位置处时,有DP=FP由中位线定理可知:P1P∥CE且P1P=CF∴点P的运动轨迹是线段P1P2,∴当BP⊥P1P2时,PB取得最小值∵矩形ABCD中,AB=4,AD=2,E为AB的中点,∴△CBE、△ADE、△BCP1为等腰直角三角形,CP1=2∴∠ADE=∠CDE=∠CP1B=45°,∠DEC=90°∴∠DP2P1=90°∴∠DP1P2=45°∴∠P2P1B=90°,即BP1⊥P1P2,∴BP的最小值为BP1的长在等腰直角BCP1中,CP1=BC=2∴BP1=2∴PB的最小值是23.(2019•山东潍坊)如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D.【答案】D.【解析】由题意当0≤x≤3时,y=3,当3<x<5时,y=×3×(5﹣x)=﹣x+.由此即可判断.由题意当0≤x≤3时,y=3,当3<x<5时,y=×3×(5﹣x)=﹣x+.4.(2019•湖北武汉)如图,AB是⊙O的直径,M、N是(异于A.B)上两点,C是上一动点,∠ACB的角平分线交⊙O于点D,∠BAC的平分线交CD于点E.当点C从点M运动到点N时,则C.E两点的运动路径长的比是()A.B.C.D.【答案】A.【解析】本题考查弧长公式,圆周角定理,三角形的内心等知识,解题的关键是理解题意,正确寻找点的运动轨迹,属于中考选择题中的压轴题.如图,连接EB.设OA=r.易知点E在以D为圆心DA为半径的圆上,运动轨迹是,点C的运动轨迹是,由题意∠MON=2∠GDF,设∠GDF=α,则∠MON=2α,利用弧长公式计算即可解决问题.∵AB是直径,∴∠ACB=90°,∵E是△ACB的内心,∴∠AEB=135°,∵∠ACD=∠BCD,∴=,∴AD=DB=r,∴∠ADB=90°,易知点E在以D为圆心DA为半径的圆上,运动轨迹是,点C的运动轨迹是,∵∠MON=2∠GDF,设∠GDF=α,则∠MON=2α∴==.5.(2019•湖南衡阳)如图,在直角三角形ABC中,∠C=90°,AC=BC,E是AB的中点,过点E作AC和BC的垂线,垂足分别为点D和点F,四边形CDEF沿着CA方向匀速运动,点C与点A重合时停止运动,设运动时间为t,运动过程中四边形CDEF与△ABC的重叠部分面积为S.则S关于t的函数图象大致为()ABCD【答案】C.【解析】本题考查动点问题的函数图象,正方形的性质、勾股定理等知识,解题的关键是读懂题意,学会分类讨论的思想,属于中考常考题型.根据已知条件得到△ABC是等腰直角三角形,推出四边形EFCD是正方形,设正方形的边长为a,当移动的距离<a时,如图1,S=正方形的面积﹣△EE′H的面积=a2﹣t2;当移动的距离>a时,如图2,S=S△AC′H=(2a﹣t)2=t2﹣2at+2a2,根据函数关系式即可得到结论;∵在直角三角形ABC中,∠C=90°,AC=BC,∴△ABC是等腰直角三角形,∵EF⊥BC,ED⊥AC,∴四边形EFCD是矩形,∵E是AB的中点,∴EF=AC,DE=BC,∴EF=ED,∴四边形EFCD是正方形,设正方形的边长为a,如图1当移动的距离<a时,S=正方形的面积﹣△EE′H的面积=a2﹣t2;当移动的距离>a时,如图2,S=S△AC′H=(2a﹣t)2=t2﹣2at+2a2,∴S关于t的函数图象大致为C选项。6.(2019•浙江衢州)如图所示,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A→D→C移动至终点C,设P点经过的路径长为x,△CPE的面积为y,则下列图象能大致反映y与x函数关系的是()ABCD【答案】C【解析】动点问题的函数图象。结合题意分情况讨论:①当点P在AE上时,②当点P在AD上时,③当点P在DC上时,根据三角形面积公式即可得出每段的y与x的函数表达式.①当点P在AE上时,∵正方形边长为4,E为AB中点,∴AE=2,∵P点经过的路径长为x,∴PE=x,∴y=S△CPE=·PE·BC=×x×4=2x,②当点P在AD上时,∵正方形边长为4,E为AB中点,∴AE=2,∵P点经过的路径长为x,∴AP=x-2,DP=6-x,∴y=S△CPE=S正方形ABCD-S△BEC-S△APE-S△PDC,=4×4-×2×4-×2×(x-2)-×4×(6-x),=16-4-x+2-12+2x,=x+2,③当点P在DC上时,∵正方形边长为4,E为AB中点,∴AE=2,∵P点经过的路径长为x,∴PD=x-6,PC=10-x,∴y=S△CPE=·PC·BC=×(10-x)×4=-2x+20,综上所述:y与x的函数表达式为:y=.7.(2019•甘肃武威)如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP的面积为y,

1 / 26
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功