2020年中考数学必考考点 专题21 菱形(含解析)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

专题21菱形1.菱形的定义:有一组邻边相等的平行四边形叫做菱形。2.菱形的性质:(1)菱形的四条边都相等;(2)菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。3.菱形的判定定理:(1)一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形;(3)四条边相等的四边形是菱形。4.菱形的面积:S菱形=底边长×高=两条对角线乘积的一半【例题1】(2019内蒙古赤峰)如图,菱形ABCD周长为20,对角线AC、BD相交于点O,E是CD的中点,则OE的长是()A.2.5B.3C.4D.5【答案】A【解析】∵四边形ABCD为菱形,∴CD=BC=204=5,且O为BD的中点,∵E为CD的中点,∴OE为△BCD的中位线,∴OE=12CB=2.5【例题2】(2019广西梧州)如图,在菱形ABCD中,2AB,60BAD,将菱形ABCD绕点A逆时针方向旋转,对应得到菱形AEFG,点E在AC上,EF与CD交于点P,则DP的长是.专题典型题考法及解析专题知识回顾【答案】31【解析】连接BD交AC于O,如图所示:四边形ABCD是菱形,2CDAB,60BCDBAD,1302ACDBACBAD,OAOC,ACBD,112OBAB,33OAOB,23AC,由旋转的性质得:2AEAB,60EAGBAD,232CEACAE,四边形AEFG是菱形,//EFAG,60CEPEAG,90CEPACD,90CPE,1312PECE,333PCPE,2(33)31DPCDPC。一、选择题1.(2019四川泸州)一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为()A.8B.12C.16D.32【答案】【解析】如图所示:∵四边形ABCD是菱形,∴AO=CO=12AC,DO=BO=12BD,AC⊥BD,∵面积为28,∴12AC•BD=2OD•AO=28①∵菱形的边长为6,∴OD2+OA2=36②,由①②两式可得:(OD+AO)2=OD2+OA2+2OD•AO=36+28=64.∴OD+AO=8,∴2(OD+AO)=16,即该菱形的两条对角线的长度之和为16.2.(2019•四川省绵阳市)如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为()A.B.C.D.【答案】D【解析】过点E作EF⊥x轴于点F,专题典型训练题∵四边形OABC为菱形,∠AOC=60°,∴=30°,∠FAE=60°,∵A(4,0),∴OA=4,∴=2,∴,EF===,∴OF=AO-AF=4-1=3,∴.3.(2019•四川省广安市)如图,在边长为3的菱形ABCD中,30B,过点A作BCAE于点E,现将△ABE沿直线AE翻折至△AFE的位置,AF与CD交于点G则CG等于()A.13B.1C.21D..23【答案】A【解析】因为∠B=30°,AB=3,AE⊥BC,所以BE=23,所以EC=3-23,则CF=3-3,又因为CG∥AB,GFEDABC所以CGCFABBF,所以CG=13.4.(2019四川省雅安市)如图,在四边形ABCD中,AB=CD,AC、BD是对角线,E、F、G、H分别是AD、BD、BC、AC的中点,连接EF、FG、GH、HE,则四边形EFGH的形状是()A.平行四边形B.矩形C.菱形D.正方形【答案】C【解析】由点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,根据三角形中位线性质,得EF=GH=AB,EH=FG=CD,又由AB=CD,得EF=FG=GH=EH时,四边形EFGH是菱形.∵点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,∴EF=GH=AB,EH=FG=CD,∵AB=CD,∴EF=FG=GH=EH时,四边形EFGH是菱形,故选C.5.(2019·贵州安顺)如图,在菱形ABCD中,按以下步骤作图:①分别以点C和点D为圆心,大于CD的长为半径作弧,两弧相交于M、N两点;②作直线MN,且MN恰好经过点A,与CD交于点E,连接BE.则下列说法错误的是()A.∠ABC=60°B.S△ABE=2S△ADEC.若AB=4,则BE=4D.sin∠CBE=【答案】C【解析】由作法得AE垂直平分CD,即CE=DE,AE⊥CD,∵四边形ABCD为菱形,FGEHABCD∴AD=CD=2DE,AB∥DE,在Rt△ADE中,cosD==,∴∠D=60°,∴∠ABC=60°,所以A选项的结论正确;∵S△ABE=AB•AE,S△ADE=DE•AE,而AB=2DE,∴S△ABE=2S△ADE,所以B选项的结论正确;若AB=4,则DE=2,∴AE=2,在Rt△ABE中,BE==2,所以C选项的结论错误;作EH⊥BC交BC的延长线于H,如图,设AB=4a,则CE=2a,BC=4a,BE=2a,在△CHE中,∠ECH=∠D=60°,∴CH=a,EH=a,∴sin∠CBE===,所以D选项的结论正确.故选:C.6.(2019·贵州贵阳)如图所示,菱形ABCD的周长是4cm,∠ABC=60°,那么这个菱形的对角线AC的长是()A.1cmB.2cmC.3cmD.4cm【答案】A【解析】由于四边形ABCD是菱形,AC是对角线,根据∠ABC=60°,而AB=BC,易证△BAC是等边三角形,从而可求AC的长.∵四边形ABCD是菱形,AC是对角线,∴AB=BC=CD=AD,∵∠ABC=60°,∴△ABC是等边三角形,∴AB=BC=AC,∵菱形ABCD的周长是4cm,∴AB=BC=AC=1cm.7.(2019•贵州省铜仁市)如图,四边形ABCD为菱形,AB=2,∠DAB=60°,点E、F分别在边DC、BC上,且CE=CD,CF=CB,则S△CEF=()A.B.C.D.【答案】D.【解答】∵四边形ABCD为菱形,AB=2,∠DAB=60°∴AB=BC=CD=2,∠DCB=60°∵CE=CD,CF=CB∴CE=CF=∴△CEF为等边三角形∴S△CEF==8.(2019•河北省)如图,菱形ABCD中,∠D=150°,则∠1=()A.30°B.25°C.20°D.15°【答案】D.【解答】∵四边形ABCD是菱形,∠D=150°,∴AB∥CD,∠BAD=2∠1,∴∠BAD+∠D=180°,∴∠BAD=180°﹣150°=30°,∴∠1=15°二、填空题9.(2019广西北部湾)如图,在菱形ABCD中,对角线AC,BD交与点O,过点A作AH⊥BC于点H,已知BO=4,S菱形ABCD=24,则AH=.【答案】245.【解析】本题考查了菱形的性质、勾股定理以及菱形面积公式,根据菱形面积=对角线积的一半可求AC,再根据勾股定理求出BC,然后由菱形的面积即可得出结果.∵四边形ABCD是菱形,∴BO=DO=4,AO=CO,AC⊥BD,∴BD=8.∵S菱形ABCD=12AC×BD=24,∴AC=6,∴OC=12AC=3,∴BC=22OBOC=5,∵S菱形ABCD=BC×AH=24,∴AH=245.10.(2019内蒙古通辽)如图,在边长为3的菱形ABCD中,∠A=60°,M是AD边上的一点,且AM=AD,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C.则A′C长度的最小值是.【答案】﹣1【解析】过点M作MH⊥CD交CD延长线于点H,连接CM,∵AM=AD,AD=CD=3∴AM=1,MD=2∵CD∥AB,∴∠HDM=∠A=60°∴HD=MD=1,HM=HD=∴CH=4∴MC==∵将△AMN沿MN所在直线翻折得到△A′MN,∴AM=A'M=1,∴点A'在以M为圆心,AM为半径的圆上,∴当点A'在线段MC上时,A'C长度有最小值∴A'C长度的最小值=MC﹣MA'=﹣111.(2019湖南常德)规定:如果一个四边形有一组对边平行,一组邻边相等,那么称此四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M、N的坐标分别为(0,1),(0,﹣1),P是二次函数y=x2的图象上在第一象限内的任意一点,PQ垂直直线y=﹣1于点Q,则四边形PMNQ是广义菱形.其中正确的是.(填序号)【答案】①②④.【解析】①根据广义菱形的定义,正方形和菱形都有一组对边平行,一组邻边相等,①正确;②平行四边形有一组对边平行,没有一组邻边相等,②错误;③由给出条件无法得到一组对边平行,③错误;④设点P(m,m2),则Q(m,﹣1),∴MP==,PQ=+1,∵点P在第一象限,∴m>0,∴MP=+1,∴MP=PQ,又∵MN∥PQ,∴四边形PMNQ是广义菱形.④正确;故答案为①②④.12.(2019湖北十堰)如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为.【答案】24【解析】∵四边形ABCD是菱形,∴AB=BC=CD=AD,BO=DO,∵点E是BC的中点,∴OE是△BCD的中位线,∴CD=2OE=2×3=6,∴菱形ABCD的周长=4×6=2413.(2019北京市)把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为_______.【答案】12【解析】设图1中小直角三角形的两直角边长分别为a,b(ab);则由图2和图3列得方程组51abab,由加减消元法得32ab,∴菱形的面积1144321222Sab.故填12.14.(2019辽宁抚顺)如图,菱形ABCD的边长为4cm,∠A=60°,BD是以点A为圆心,AB长为半径的弧,CD是以点B为圆心,BC长为半径的弧,则阴影部分的面积为cm2.【答案】4.【解析】连接BD,判断出△ABD是等边三角形,根据等边三角形的性质可得∠ABD=60°,再求出∠CBD=60°,然后求出阴影部分的面积=S△ABD,计算即可得解.如图,连接BD,∵四边形ABCD是菱形,∴AB=AD,∵∠A=60°,∴△ABD是等边三角形,∴∠ABD=60°,又∵菱形的对边AD∥BC,∴∠ABC=180°﹣60°=120°,图3图2图115∴∠CBD=120°﹣60°=60°,∴S阴影=S扇形BDC﹣(S扇形ABD﹣S△ABD),=S△ABD,=×4×=4cm2.三、解答题15.(2019湖南岳阳)如图,在菱形ABCD中,点E、F分别为AD、CD边上的点,DE=DF,求证:∠1=∠2.【答案】见解析.【解析】证明:∵四边形ABCD是菱形,∴AD=CD,在△ADF和△CDE中,,∴△ADF≌△CDE(SAS),∴∠1=∠2.16.(2019•海南省)如图,在边长为l的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A、D不重合),射线PE与BC的延长线交于点Q.(1)求证:△PDE≌△QCE;(2)过点E作EF∥BC交PB于点F,连结AF,当PB=PQ时,①求证:四边形AFEP是平行四边形;②请判断四边形AFEP是否为菱形,并说明理由.【解析】(1)由四边形ABCD是正方形知∠D=∠ECQ=90°,由E是CD的中点知DE=CE,结合∠DEP=∠CEQ即可得证;(2)①由PB=PQ知∠PBQ=∠Q,结合AD∥BC得∠APB=∠PBQ=∠Q=∠EPD,由△PDE≌△QCE知PE=QE,再由EF∥BQ知PF=BF,根据Rt△PAB中AF=PF=BF知∠APF=∠PAF,从而得∠PAF=∠EPD,据此即可证得PE∥AF,从而得证;②设AP=x,则PD=1﹣x,若四边形AFEP是菱形,则PE=PA=x,由PD2+DE2=PE2得关于x的方程,解之求得x的值,从而得出四边形AFEP为菱形的情况.【解答】(1)∵四边形ABCD是正方形,∴∠D=∠ECQ=90°,∵E是CD的中点,∴DE=CE,

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功