2020年中考数学必考考点 专题18 解直角三角形问题(含解析)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

专题18解直角三角形问题一、勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。,那么这个三角形是直角三角形。3.定理:经过证明被确认正确的命题叫做定理。4.我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)5.直角三角形的性质:(1)直角三角形的两锐角互余;(2)直角三角形的两条直角边的平方和等于斜边的平方;(3)直角三角形中30°角所对直角边等于斜边的一半;(4)直角三角形斜边上的中线等于斜边的一半。6.直角三角形的判定:(1)有一个角等于90°的三角形是直角三角形(2)两锐角互余的三角形是直角三角形(3)两条边的平方和等于另一边的平方的三角形是直角三角形(4)有一边上的中线等于这边的一半的三角形是直角三角形二、锐角三角函数1.各种锐角三角函数的定义(1)正弦:在△ABC中,∠C=90°把锐角A的对边与斜边的比值叫做∠A的正弦,记作sinA=∠A的对边斜边(2)余弦:在△ABC中,∠C=90°,把锐角A的邻边与斜边比值的叫做∠A的余弦,记作cosA=∠A的邻边斜边(3)正切:在△ABC中,∠C=90°,把锐角A的对边与邻边的比值叫做∠A的正切,记作tanA=∠A的对边∠A的邻边2.特殊值的三角函数:专题知识回顾αsinαcosαtanαcotα0°010不存在30°123233345°22221160°321233390°10不存在0三、仰角、俯角、坡度概念1.仰角:视线在水平线上方的角;2.俯角:视线在水平线下方的角。3.坡度(坡比):坡面的铅直高度h和水平宽度l的比叫做坡度(坡比)。用字母i表示,即hil。把坡面与水平面的夹角记作(叫做坡角),那么tanhil。四、各锐角三角函数之间的关系(1)互余关系sinA=cos(90°—A),cosA=sin(90°—A)tanA=cot(90°—A),cotA=tan(90°—A)(2)平方关系1cossin22AA(3)倒数关系tanAtan(90°—A)=1(4)弦切关系tanA=AAcossin仰角铅垂线水平线视线视线俯角:ihlhlα专题典型题考法及解析【例题1】(2019•湖北省鄂州市)如图,已知线段AB=4,O是AB的中点,直线l经过点O,∠1=60°,P点是直线l上一点,当△APB为直角三角形时,则BP=.【答案】2或2或2.【解析】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.分∠APB=90°、∠PAB=90°、∠PBA=90°三种情况,根据直角三角形的性质、勾股定理计算即可.∵AO=OB=2,∴当BP=2时,∠APB=90°,当∠PAB=90°时,∵∠AOP=60°,∴AP=OA•tan∠AOP=2,∴BP==2,当∠PBA=90°时,∵∠AOP=60°,∴BP=OB•tan∠1=2,故答案为:2或2或2.【例题2】(2019•湖南长沙)如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60nmile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是()A.30nmileB.60nmileC.120nmileD.(30+30)nmile【答案】D【解析】此题主要考查了解直角三角形的应用﹣方向角问题,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.过点C作CD⊥AB,则在Rt△ACD中易得AD的长,再在直角△BCD中求出BD,相加可得AB的长.过C作CD⊥AB于D点,∴∠ACD=30°,∠BCD=45°,AC=60.在Rt△ACD中,cos∠ACD=,∴CD=AC•cos∠ACD=60×=30.在Rt△DCB中,∵∠BCD=∠B=45°,∴CD=BD=30,∴AB=AD+BD=30+30.答:此时轮船所在的B处与灯塔P的距离是(30+30)nmile.【例题3】(2019•江苏连云港)如图,海上观察哨所B位于观察哨所A正北方向,距离为25海里.在某时刻,哨所A与哨所B同时发现一走私船,其位置C位于哨所A北偏东53°的方向上,位于哨所B南偏东37°的方向上.(1)求观察哨所A与走私船所在的位置C的距离;(2)若观察哨所A发现走私船从C处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76°的方向前去拦截,求缉私艇的速度为多少时,恰好在D处成功拦截.(结果保留根号)(参考数据:sin37°=cos53°≈,cos37°=sin53°≈,tan37°≈,tan76°≈4)【答案】(1)观察哨所A与走私船所在的位置C的距离为15海里;(2)当缉私艇的速度为6海里/小时时,恰好在D处成功拦截.【解析】(1)先根据三角形内角和定理求出∠ACB=90°,再解Rt△ABC,利用正弦函数定义得出AC即可;在△ABC中,∠ACB=180°﹣∠B﹣∠BAC=180°﹣37°﹣53°=90°.在Rt△ABC中,sinB=,∴AC=AB•sin37°=25×=15(海里).答:观察哨所A与走私船所在的位置C的距离为15海里;(2)过点C作CM⊥AB于点M,易知,D.C.M在一条直线上.解Rt△AMC,求出CM、AM.解Rt△AMD中,求出DM、AD,得出CD.设缉私艇的速度为x海里/小时,根据走私船行驶CD所用的时间等于缉私艇行驶AD所用的时间列出方程,解方程即可.过点C作CM⊥AB于点M,由题意易知,D.C.M在一条直线上.在Rt△AMC中,CM=AC•sin∠CAM=15×=12,AM=AC•cos∠CAM=15×=9.在Rt△AMD中,tan∠DAM=,∴DM=AM•tan76°=9×4=36,∴AD===9,CD=DM﹣CM=36﹣12=24.设缉私艇的速度为x海里/小时,则有=,解得x=6.经检验,x=6是原方程的解.答:当缉私艇的速度为6海里/小时时,恰好在D处成功拦截.一、选择题1.(2019•渝北区)如果下列各组数是三角形的三边,则能组成直角三角形的是()A.1,,2B.1,3,4C.2,3,6D.4,5,6【答案】A.【解析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.A.12+()2=22,故是直角三角形,故此选项正确;B.12+32≠42,故不是直角三角形,故此选项错误;C.22+32≠62,故不是直角三角形,故此选项错误;D.42+52≠62,故不是直角三角形,故此选项错误.2.(2019•巴南区)下列各组数据中,能够成为直角三角形三条边长的一组数据是()A.,,B.32,42,52C.D.0.3,0.4,0.5【答案】D.【解析】先根据三角形的三边关系定理看看能否组成三角形,再根据勾股定理的逆定理逐个判断即可.A.()2+()2≠()2,即三角形不是直角三角形,故本选项不符合题意;B.(32)2+(42)2≠(52)2,即三角形不是直角三角形,故本选项不符合题意;专题典型训练题C.()2+()2≠()2,即三角形不是直角三角形,故本选项不符合题意;D.0.032+0.042=0.052,即三角形是直角三角形,故本选项符合题意。3.(2019广西省贵港市)将一条宽度为2cm的彩带按如图所示的方法折叠,折痕为AB,重叠部分为ABC(图中阴影部分),若45ACB,则重叠部分的面积为()A.222cmB.223cmC.24cmD.242cm【答案】A.【解析】过B作BDAC于D,则90BDC,依据勾股定理得出BC的长,进而得到重叠部分的面积.如图,过B作BDAC于D,则90BDC,45ACB,45CBD,2BDCDcm,RtBCD中,222222()BCcm,重叠部分的面积为122222()2cm,故选:A.4.(2019贵州省毕节市)如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为()A.3B.3C.5D.5【答案】B.【解析】勾股定理.∵四边形ABCD是正方形,∴∠B=90°,∴BC2=EC2﹣EB2=22﹣12=3,∴正方形ABCD的面积=BC2=3.故选:B.5.(2019•南岸区)如图,在Rt△ABC中,∠A=90°,∠C=30°,BC的垂直平分线交AC于点D,并交BC于点E,若ED=3,则AC的长为()A.3B.3C.6D.9【答案】D.【解析】根据线段垂直平分线的性质得到DC=DB,DE⊥BC,求出BD=DC=2DE=3,根据直角三角形的性质计算即可.∵DE是线段BC的垂直平分线,∴DC=DB,DE⊥BC,∵∠C=30°,∴BD=DC=2DE=3,∴∠DBC=∠C=30°,在△ABC中,∠A=90°,∠C=30°,∴∠ABC=60°,∴∠ABD=60°﹣30°=30°,∴AD=BD=3,∴AC=DC+AD=9.6.(2019•西藏)如图,在⊙O中,半径OC垂直弦AB于D,点E在⊙O上,∠E=22.5°,AB=2,则半径OB等于()A.1B.C.2D.2【答案】B【解析】直接利用垂径定理进而结合圆周角定理得出△ODB是等腰直角三角形,进而得出答案.∵半径OC⊥弦AB于点D,∴=,∴∠E=∠BOC=22.5°,∴∠BOD=45°,∴△ODB是等腰直角三角形,∵AB=2,∴DB=OD=1,则半径OB等于:=.7.(2019•江苏苏州)如图,小亮为了测量校园里教学楼AB的高度,将测角仪CD竖直放置在与教学楼水平距离为183m的地面上,若测角仪的高度为1.5m,测得教学楼的顶部A处的仰角为30o,则教学楼的高度是()A.55.5mB.54mC.19.5mD.18m【答案】C【解析】考察30o角的三角函数值,中等偏易题目过D作DEAB交AB于E,30°CDAB183DEBC在RtADEV中,tan30AEDEo318318m3AE181.519.5mAB8.(2019•湖南长沙)如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是()A.2B.4C.5D.10【答案】B.【解析】如图,作DH⊥AB于H,CM⊥AB于M.由tanA==2,设AE=a,BE=2a,利用勾股定理构建方程求出a,再证明DH=BD,推出CD+BD=CD+DH,由垂线段最短即可解决问题.如图,作DH⊥AB于H,CM⊥AB于M.∵BE⊥AC,30°CDABE∴∠ABE=90°,∵tanA==2,设AE=a,BE=2a,则有:100=a2+4a2,∴a2=20,∴a=2或﹣2(舍弃),∴BE=2a=4,∵AB=AC,BE⊥AC,CM⊥AC,∴CM=BE=4(等腰三角形两腰上的高相等))∵∠DBH=∠ABE,∠BHD=∠BEA,∴sin∠DBH===,∴DH=BD,∴CD+BD=CD+DH,∴CD+DH≥CM,∴CD+BD≥4,∴CD+BD的最小值为4.二、填空题9.(2019·贵州安顺)如图,在Rt△ABC中,∠BAC=90°,且BA=3,AC=4,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为.【答案】.【解析】∵∠BAC=90°,且BA=3,AC=4,∴BC==5,∵DM⊥AB,DN⊥AC,∴∠DMA=∠DNA=∠BAC=90°,∴四边形DMAN是矩形,∴MN=AD,∴当AD⊥BC时,AD的值最小,此时,△ABC的面积=AB×AC=BC×AD,∴AD==,∴MN的最小值为。10.(2019贵州省毕节市)三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C在FD的延长线上,点B在ED上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,则CD的长度是.【答案】15﹣53.【解析】考查含30度角的直角三角形;勾股定理.过点

1 / 23
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功