2020年中考数学必考考点 专题9 一元二次方程及其应用(含解析)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

专题09一元二次方程及其应用1.定义:等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程。2.一元二次方程的一般形式:ax2+bx+c=0(a≠0)。其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。3.一元二次方程的根:使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根。4.一元二次方程的解法有直接开方法、配方法、公式法、因式分解法。(1)直接开方法。适用形式:x2=p、(x+n)2=p或(mx+n)2=p。(2)配方法。套用公式a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2,配方法解一元二次方程的一般步骤是:①化简——把方程化为一般形式,并把二次项系数化为1;②移项——把常数项移项到等号的右边;③配方——两边同时加上b2,把左边配成x2+2bx+b2的形式,并写成完全平方的形式;④开方,即降次;⑤解一次方程。(3)公式法。当b2-4ac≥0时,方程ax2+bx+c=0的实数根可写为:aacbbx242的形式,这个式子叫做一元二次方程ax2+bx+c=0的求根公式。这种解一元二次方程的方法叫做公式法。①b2-4ac>0时,方程有两个不相等的实数根。aacbbx2421,aacbbx2422②b2-4ac=0时,方程有两个相等的实数根。abxx221专题知识回顾③b2-4ac<0时,方程无实数根。定义:b2-4ac叫做一元二次方程ax2+bx+c=0的根的判别式,通常用字母Δ表示,即Δ=b2-4ac。(4)因式分解法。因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。主要用提公因式法、平方差公式。5.一元二次方程根与系数的关系如果方程)0(02acbxax的两个实数根是21xx,,那么abxx21,acxx21。也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。6.解有关一元二次方程的实际问题的一般步骤第1步:审题。认真读题,分析题中各个量之间的关系。第2步:设未知数。根据题意及各个量的关系设未知数。第3步:列方程。根据题中各个量的关系列出方程。第4步:解方程。根据方程的类型采用相应的解法。第5步:检验。检验所求得的根是否满足题意。第6步:答。【例题1】(2019安徽)解方程:(x﹣1)2=4.【答案】x1=3,x2=﹣1.【解析】此题主要考查了直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.利用直接开平方法,方程两边直接开平方即可.两边直接开平方得:x﹣1=±2,∴x﹣1=2或x﹣1=﹣2,解得:x1=3,x2=﹣1.专题典型题考法及解析【例题2】(2019山西)一元二次方程0142xx配方后可化为()A.3)2(2xB.5)2(2xC.3)2(2xD.5)2(2x【答案】D【解析】222410,(44)410,(2)5xxxxx,故选D。【例题3】(2019年山东省威海市)一元二次方程3x2=4﹣2x的解是.【答案】x1=,x2=.【解析】直接利用公式法解方程得出答案.3x2=4﹣2x3x2+2x﹣4=0,则b2﹣4ac=4﹣4×3×(﹣4)=52>0,故x=,解得:x1=,x2=.【例题4】(2019年江苏省扬州市)一元二次方程x(x﹣2)=x﹣2的根是.【答案】1或2.【解析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.x(x﹣2)=x﹣2,x(x﹣2)﹣(x﹣2)=0,(x﹣2)(x﹣1)=0,x﹣2=0,x﹣1=0,x1=2,x2=1【例题5】(2019北京市)关于x的方程22210xxm有实数根,且m为正整数,求m的值及此时方程的根.【答案】m=1,此方程的根为121xx【解析】先由原一元二次方程有实数根得判别式240bac进而求出m的范围;结合m的值为正整数,求出m的值,进而得到一元二次方程求解即可.∵关于x的方程22210xxm有实数根,∴22424121484880bacmmm∴1m又∵m为正整数,∴m=1,此时方程为2210xx解得根为121xx,∴m=1,此方程的根为121xx【例题6】(2019四川泸州)已知x1,x2是一元二次方程x2﹣x﹣4=0的两实根,则(x1+4)(x2+4)的值是.【答案】16【解析】考查一元二次方程根与系数的关系∵x1,x2是一元二次方程x2﹣x﹣4=0的两实根,∴x1+x2=1,x1x2=﹣4,∴(x1+4)(x2+4)=x1x2+4x1+4x2+16=x1x2+4(x1+x2)+16=﹣4+4×1+16=﹣4+4+16=16【例题7】(2019安徽)据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是()A.2019年B.2020年C.2021年D.2022年【答案】B.【解析】根据题意分别求出2019年全年国内生产总值、2020年全年国内生产总值,得到答案.2019年全年国内生产总值为:90.3×(1+6.6%)=96.2598(万亿),2020年全年国内生产总值为:96.2598×(1+6.6%)≈102.6(万亿),∴国内生产总值首次突破100万亿的年份是2020年。一、选择题1.(2019甘肃省兰州市)x=1是关于的一元二次方程x2+ax+2b=0的解,则2a+4b=()专题典型训练题A.-2B.-3C.4D.-6【答案】A.【解析】将x=1代入方程x2+ax+2b=0,得a+2b=-1,2a+4b=2(a+2b)=2×(-1)=-2.2.(2019•湖南怀化)一元二次方程x2+2x+1=0的解是()A.x1=1,x2=﹣1B.x1=x2=1C.x1=x2=﹣1D.x1=﹣1,x2=2【答案】C.【解析】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.利用完全平方公式变形,从而得出方程的解.∵x2+2x+1=0,∴(x+1)2=0,则x+1=0,解得x1=x2=﹣1,3.(2019•浙江金华)用配方法解方程x2-6x-8=0时,配方结果正确的是()A.(x-3)2=17B.(x-3)2=14C.(x-6)2=44D.(x-3)2=1【答案】A【解析】配方法解一元二次方程∵x2-6x-8=0,∴x2-6x+9=8+9,∴(x-3)2=17.4.(2019湖北咸宁)若关于x的一元二次方程x2﹣2x+m=0有实数根,则实数m的取值范围是()A.m<1B.m≤1C.m>1D.m≥1【答案】【解析】∵关于x的一元二次方程x2﹣2x+m=0有实数根,∴△=(﹣2)2﹣4m≥0,解得:m≤1.5.(2019内蒙古包头市)已知等腰三角形的三边长分别为a,b,4,且a,b是关于x的一元二次方程x2-12x+m+2=0的两根,则m的值是()A.34B.30C.30或34D.30或36【答案】A.【解析】分两种情况讨论:①若4为等腰三角形底边长,则a,b是两腰,∴方程x2-12x+m+2=0有两个相等实根,∴△=(-12)2-4×1×(m+2)=136-4m=0,∴m=34.此时方程为x2-12x+36=0,解得x1=x2=6.∴三边为6,6,4,满足三边关系,符合题意.②若4为等腰三角形腰长,则a,b中有一条边也为4,∴方程x2-12x+m+2=0有一根为4.∴42-12×4+m+2=0,解得,m=30.此时方程为x2-12x+32=0,解得x1=4,x2=8.∴三边为4,4,8,不满足三边关系,故舍去.综上,m的值为34.6.(2019•山东省聊城市)若关于x的一元二次方程(k﹣2)x2﹣2kx+k=6有实数根,则k的取值范围为()A.k≥0B.k≥0且k≠2C.k≥D.k≥且k≠2【答案】D.【解析】考点是一元二次方程的定义以及根的判别式。根据二次项系数非零结合根的判别式△≥0,即可得出关于k的一元一次不等式组,解之即可得出k的取值范围.(k﹣2)x2﹣2kx+k﹣6=0,∵关于x的一元二次方程(k﹣2)x2﹣2kx+k=6有实数根,∴,解得:k≥且k≠2.7.(2019湖北仙桃)若方程x2﹣2x﹣4=0的两个实数根为α,β,则α2+β2的值为()A.12B.10C.4D.﹣4【答案】A【解析】∵方程x2﹣2x﹣4=0的两个实数根为α,β,∴α+β=2,αβ=﹣4,∴α2+β2=(α+β)2﹣2αβ=4+8=128.(2019•江苏泰州)方程2x2+6x﹣1=0的两根为x1、x2则x1+x2等于()A.﹣6B.6C.﹣3D.3【答案】C.【解析】根据根与系数的关系即可求出答案.由于△>0,∴x1+x2=﹣3,9.(2019山东淄博)若x1+x2=3,x12+x22=5,则以x1,x2为根的一元二次方程是()A.x2﹣3x+2=0B.x2+3x﹣2=0C.x2+3x+2=0D.x2﹣3x﹣2=0【答案】A.【解析】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.利用完全平方公式计算出x1x2=2,然后根据根与系数的关系写出以x1,x2为根的一元二次方程.∵x12+x22=5,∴(x1+x2)2﹣2x1x2=5,而x1+x2=3,∴9﹣2x1x2=5,∴x1x2=2,∴以x1,x2为根的一元二次方程为x2﹣3x+2=0.10.(2019•广东)已知x1.x2是一元二次方程了x2﹣2x=0的两个实数根,下列结论错误的是()A.x1≠x2B.x12﹣2x1=0C.x1+x2=2D.x1·x2=2【答案】D【解析】因式分解x(x-2)=0,解得两个根分别为0和2,代入选项排除法.11.(2019•广西贵港)若α,β是关于x的一元二次方程x2﹣2x+m=0的两实根,且+=﹣,则m等于()A.﹣2B.﹣3C.2D.3【答案】B.【解析】利用一元二次方程根与系数的关系得到α+β=2,αβ=m,再化简+=,代入可求解;α,β是关于x的一元二次方程x2﹣2x+m=0的两实根,∴α+β=2,αβ=m,∵+===﹣,∴m=﹣312.(2019•浙江宁波)能说明命题“关于x的方程x2﹣4x+m=0一定有实数根”是假命题的反例为()A.m=﹣1B.m=0C.m=4D.m=5【答案】D.【解析】利用m=5使方程x2﹣4x+m=0没有实数解,从而可把m=5作为说明命题“关于x的方程x2﹣4x+m=0一定有实数根”是假命题的反例.当m=5时,方程变形为x2﹣4x+m=5=0,因为△=(﹣4)2﹣4×5<0,所以方程没有实数解,所以m=5可作为说明命题“关于x的方程x2﹣4x+m=0一定有实数根”是假命题的反例.13.(2019▪黑龙江哈尔滨)某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为()A.20%B.40%C.18%D.36%【答案】A.【解析】本题考查了一元二次方程实际应用问题关于增长率的类型问题,按照公式a(1﹣x)2=b对照参数位置代入值即可,公式的记忆与运用是本题的解题关键.设降价的百分率为x根据题意可

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功