单元检测二函数概念与基本初等函数Ⅰ(提升卷)考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间100分钟,满分130分.4.请在密封线内作答,保持试卷清洁完整.第Ⅰ卷(选择题共60分)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f(x)=1lgx+2-x的定义域为()A.(-∞,2]B.(0,1)∪(1,2]C.(0,2]D.(0,2)答案B解析要使函数f(x)有意义,则x0,lgx≠0,2-x≥0,解得0x≤2且x≠1.2.(2019·哈尔滨师大附中模拟)与函数y=x相同的函数是()A.y=x2B.y=x2xC.y=(x)2D.y=logaax(a0且a≠1)答案D解析A中对应关系不同;B中定义域不同;C中定义域不同;D中对应关系,定义域均相同,是同一函数.3.下列函数在其定义域内既是奇函数,又是增函数的是()A.y=-1xB.y=12xC.y=x3D.y=log2x答案C解析y=-1x在其定义域内既不是增函数,也不是减函数;y=12x在其定义域内既不是偶函数,也不是奇函数;y=x3在其定义域内既是奇函数,又是增函数;y=log2x在其定义域内既不是偶函数,也不是奇函数.4.已知f(x)=x-x2,则函数f(x)的解析式为()A.f(x)=x2-x4B.f(x)=x-x2C.f(x)=x2-x4(x≥0)D.f(x)=x-x(x≥0)答案C解析因为f(x)=(x)2-(x)4,所以f(x)=x2-x4(x≥0).5.(2019·宁夏银川一中月考)二次函数f(x)=4x2-mx+5,对称轴x=-2,则f(1)的值为()A.-7B.17C.1D.25答案D解析函数f(x)=4x2-mx+5的图象的对称轴为x=-2,可得m8=-2,解得m=-16,所以f(x)=4x2+16x+5.则f(1)=4+16+5=25.6.若a=30.3,b=logπ3,c=log0.3e,则()A.abcB.bacC.cabD.bca答案A解析因为00.31,e1,所以c=log0.3e0,由于0.30,所以a=30.31,由13π,得0b=logπ31,所以abc.7.已知f(x+1)=-lnx+3x-1,则函数f(x)的图象大致为()答案A解析由题意得f(x+1)=-lnx+3x-1=-lnx+1+2x+1-2,所以f(x)=-lnx+2x-2=lnx-2x+2.由x-2x+20,解得定义域为(-∞,-2)∪(2,+∞),故排除B.因为f(-x)=ln-x-2-x+2=lnx+2x-2=-lnx-2x+2=-f(x),所以函数f(x)为奇函数,排除C.又f(3)=ln150,故排除D.8.已知函数f(x)=-x2+4x,当x∈[m,5]时,f(x)的值域是[-5,4],则实数m的取值范围是()A.(-∞,-1)B.(-1,2]C.[-1,2]D.[2,5]答案C解析f(x)=-(x-2)2+4,所以当x=2时,f(2)=4.由f(x)=-5,解得x=5或x=-1.所以要使函数f(x)在区间[m,5]上的值域是[-5,4],则-1≤m≤2.9.(2018·南昌模拟)已知函数f(x)的图象关于y轴对称,且f(x)在(-∞,0]上单调递减,则满足f(3x+1)f12的实数x的取值范围是()A.-12,-16B.-12,-16C.-13,-16D.-13,-16答案B解析由函数f(x)的图象关于y轴对称,且f(x)在(-∞,0]上单调递减,得f(x)在(0,+∞)上单调递增.又f(3x+1)f12,所以|3x+1|12,解得-12x-16.10.(2018·孝感模拟)设f(x)=log3x2+t,x0,2t+1x,x≥0,且f(1)=6,则f(f(-2))的值为()A.12B.18C.112D.118答案A解析∵f(x)=log3x2+t,x0,2t+1x,x≥0,∴f(1)=2(t+1)=6,解得t=2.∴f(-2)=log3(4+2)=log36,f(f(-2))=12.11.如图,在直角梯形ABCD中,AB⊥BC,AD=DC=2,CB=2,动点P从点A出发,由A→D→C→B沿边运动,点P在AB上的射影为Q.设点P运动的路程为x,△APQ的面积为y,则y=f(x)的图象大致是()答案D解析根据题意可得到y=f(x)=14x2,0≤x≤2,22x+1-2,2x4,-2+22x-4-2,4≤x≤4+2,由二次函数和一次函数的图象可知f(x)的图象只能是D.12.定义在R上的函数y=f(x+2)的图象关于直线x=-2对称,且f(x+1)是偶函数.若当x∈[0,1]时,f(x)=sinπ2x,则函数y=f(x)与y=e-|x|的图象在区间[-2020,2020]上的交点个数为()A.2019B.2020C.4038D.4040答案D解析因为函数y=f(x+2)的图象关于直线x=-2对称,所以函数y=f(x)图象的对称轴为直线x=0,故y=f(x)是偶函数,即f(-x)=f(x).又f(x+1)是偶函数,所以f(x+1)=f(-x+1).故f(x+2)=f(-x)=f(x),所以函数f(x)是周期为2的偶函数.又当x∈[0,1]时,f(x)=sinπ2x,作出y=f(x)与y=1e|x|的图象,如图所示.结合图象可知在每个周期内,两函数的图象有2个交点,所以在区间[-2020,2020]上的交点个数为2020×2=4040.第Ⅱ卷(非选择题共70分)二、填空题(本题共4小题,每小题5分,共20分.把答案填在题中横线上)13.幂函数f(x)=(m2-m-1)223mmx在区间(0,+∞)内为增函数,则实数m的值为______.答案2解析根据题意得m2-m-1=1,解得m=2或m=-1.因为当x∈(0,+∞)时,f(x)为增函数,所以当m=2时,m2+2m-3=5,幂函数为f(x)=x5,满足题意;当m=-1时,m2+2m-3=-4,幂函数为f(x)=x-4,不满足题意.综上,m=2.14.已知函数f(x)是定义在R上的周期为2的奇函数,且当0≤x1时,f(x)=2x+a,f(1)=0,则f(-3)+f(14-log27)=________.答案-34解析易知f(-3)=f(1)=0,由f(x)是奇函数,知f(0)=0,所以20+a=0,所以a=-1.因为log27=2+log274,所以f(14-log27)=f-log274=-flog274=-74-1=-34,则f(-3)+f(14-log27)=0-34=-34.15.已知函数f(x)=2x-a,x≤0,x2-3ax+a,x0有三个不同的零点,则实数a的取值范围是________.答案49,1解析如图,要使函数f(x)的图象和x轴有三个交点,则0a≤1,3a20,9a2-4a0,解得49a≤1.16.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x∈R,用[x]表示不超过x的最大整数,则y=[x]称为高斯函数.例如:[-3.5]=-4,[2.1]=2.已知函数f(x)=ex1+ex-12,则函数y=[f(x)]+[f(-x)]的值域是________.答案{-1,0}解析因为f(x)=ex-12ex+1,则f(-x)=1-ex21+ex=-f(x),所以f(x)为奇函数.因为函数f(x)=ex1+ex-12=12-1ex+1,又ex+11,所以01ex+11,故-1212-1ex+112.当f(x)∈-12,0时,[f(x)]=-1,[f(-x)]=0;当f(x)∈0,12时,[f(x)]=0,[f(-x)]=-1;当f(x)=0时,[f(x)]=0,[f(-x)]=0.所以函数y=[f(x)]+[f(-x)]的值域为{-1,0}.三、解答题(本题共4小题,共50分.解答应写出文字说明、证明过程或演算步骤)17.(12分)已知函数f(x)=12ax,a为常数,且函数的图象过点(-1,2).(1)求常数a的值;(2)若g(x)=4-x-2,且存在x,使g(x)=f(x),求满足条件的x的值.解(1)由已知得12-a=2,解得a=1.(2)由(1)知f(x)=12x,因为存在x,使g(x)=f(x),所以4-x-2=12x,即14x-12x-2=0,即12x2-12x-2=0有解,令12x=t(t0),则t2-t-2=0,即(t-2)(t+1)=0,解得t=2,即12x=2,解得x=-1,故满足条件的x的值为-1.18.(12分)已知函数f(x)=3x+7x+2,x∈(-2,2).(1)判断函数f(x)的单调性;(2)解不等式12log[f(-2m+3)]12log[f(m2)].解(1)任取x1,x2∈(-2,2),且x1x2,则f(x1)-f(x2)=3x1+7x1+2-3x2+7x2+2=3x1+7x2+2-3x2+7x1+2x1+2x2+2=x2-x1x1+2x2+2.∵x1x2,∴x2-x10,又x1,x2∈(-2,2),∴x1+20,x2+20,∴f(x1)-f(x2)0,即f(x1)f(x2).∴函数f(x)=3x+7x+2,x∈(-2,2)为减函数.(2)由(1)知函数f(x)在(-2,2)上为减函数,易知f(x)0,∴12log[f(-2m+3)]12log[f(m2)]等价于f(-2m+3)f(m2),∴-2-2m+32,-2m22,-2m+3m2,解得12m1.故所求不等式的解集为12,1.19.(13分)小王于年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x年年底出售,其销售价格为(25-x)万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=累计收入+销售收入-总支出)解(1)设大货车运输到第x年年底,该车运输累计收入与总支出的差为y万元,则y=25x-[6x+x(x-1)]-50=-x2+20x-50(0x≤10,x∈N*).由-x2+20x-500,可得10-52x10+52.又210-523,故大货车运输到第3年年底,该车运输累计收入超过总支出.(2)∵利润=累计收入+销售收入-总支出,∴二手车出售后,小张的年平均利润为y=y+25-xx=19-x+25x≤19-2x×25x=19-10=9,当且仅当x=5时,等号成立.∴小王应当在第5年年底将大货车出售,能使小王获得的年平均利润最大.20.(13分)已知函数f(x)=log2(4x+1)-x.(1)若函数y=f(x)-x-a没有零点,求实数a的取值范围;(2)若函数h(x)=2f(x)+x+m·2x-1,x∈[0,log23]的最小值为0,求实数m的值.解(1)函数y=f(x)-x-a没有零点,即关于x的方程log2(4x+1)-2x