考点测试65随机抽样高考概览高考在本考点的常考题型为选择题、填空题,分值为5分,中、低等难度考纲研读1.理解随机抽样的必要性和重要性2.会用简单随机抽样方法从总体中抽取样本,了解分层抽样和系统抽样方法一、基础小题1.为了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k为()A.40B.20C.30D.15答案C解析系统抽样中分段间隔k=120040=30.选C.2.某学校为了了解某年高考数学的考试成绩,在高考后对该校1200名考生进行抽样调查,其中有400名文科考生,600名理科考生,200名艺术和体育类考生,从中抽取120名考生作为样本,记这项调查为①;从10名家长中随机抽取3名参加座谈会,记这项调查为②,则完成①,②这两项调查宜采用的抽样方法依次是()A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法答案B解析在①中,文科考生、理科考生、艺术和体育类考生会存在差异,采用分层抽样法较好;在②中,抽取的样本个数较少,宜采用简单随机抽样法.3.某校高三年级共有学生900人,编号为1,2,3,…,900,现用系统抽样的方法抽取一个容量为45的样本,则抽取的45人中,编号落在[481,720]的人数为()A.10B.11C.12D.13答案C解析系统抽样,是抽多少人就把总体分成多少组,于是抽样间隔就是用总体数量除以样本容量:90045=20.于是落在[481,720]内的人数为720-48020=12.故选C.4.高三(3)班共有学生56人,座号分别为1,2,3,…,56,现根据座号,用系统抽样的方法,抽取一个容量为4的样本.已知3号、17号、45号同学在样本中,那么样本中还有一个同学的座号是()A.30B.31C.32D.33答案B解析由系统抽样的特点,得到样本中的座号形成一个以3为首项,公差为17-3=14的等差数列,则第三个座号是17+14=31.故选B.5.从2018名学生中选取30名学生参加全国数学联赛,若采用下面的方法选取:先用简单随机抽样法从2018人中剔除8人,剩下的2010人再按系统抽样的方法抽取,则每人入选的概率()A.不全相等B.均不相等C.都相等,且为151009D.都相等,且为167答案C解析从N个个体中抽取M个个体,则每个个体被抽到的概率都等于MN.选C.6.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()7816657208026314070243699728019832049234493582003623486969387481A.08B.07C.02D.01答案D解析从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出的数字为08,02,14,07,01,…,故选出的第5个个体的编号为01.选D.7.某高中在校学生2000人,高一年级与高二年级人数相同并都比高三年级多1人.为了响应“阳光体育运动”号召,学校举行了“元旦”跑步和登山比赛活动.每人都参加而且只参加了其中一项比赛,各年级参加比赛人数情况如下表:高一年级高二年级高三年级跑步abc登山xyz其中a∶b∶c=2∶3∶5,全校参加登山的人数占总人数的25.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则在高二年级参加跑步的学生中应抽取()A.36人B.60人C.24人D.30人答案A解析因为全校参加登山的人数占总人数的25,则全校参加跑步的人数占总人数的35,即2000×35=1200(人).高二年级参加跑步的学生人数为1200×32+3+5=360,从中抽取一个200人的样本,则在高二年级参加跑步的学生中应抽取360×2002000=36(人).故选A.8.对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则()A.p1=p2p3B.p2=p3p1C.p1=p3p2D.p1=p2=p3答案D解析由于三种抽样过程中,每个个体被抽到的概率都是相等的,因此p1=p2=p3.9.从一群游戏的小孩中随机抽出k人,一人分一个苹果,让他们返回继续游戏.过了一会儿,再从中任取m人,发现其中有n个小孩曾分过苹果,估计参加游戏的小孩的人数为()A.knmB.k+m-nC.kmnD.不能估计答案C解析设参加游戏的小孩有x人,则kx=nm,∴x=kmn.即参加游戏的小孩的人数为kmn.10.某城区有农民、工人、知识分子家庭共计2000户,其中农民1800户,工人100户,现从中抽取一个容量为40的样本来调查家庭收入情况,以下给出了几种常见的抽样方法:①简单随机抽样;②系统抽样;③分层抽样.则在整个抽样过程中,可以用到的抽样方法有________.答案①②③解析由于各家庭有明显的差异,所以首先应用分层抽样的方法分别从农民、工人、知识分子这三类家庭中抽出36户、2户、2户,又由于农民家庭户数较多,那么在农民家庭这一层宜采用系统抽样方法;而工人、知识分子家庭户数较少,宜采用简单随机抽样方法,故整个抽样过程要用到①②③三种抽样方法.11.已知某单位有40名职工,现要从中抽取5名职工,将全体职工随机按1~40编号,并按编号顺序平均分成5组.按系统抽样方法在各组内抽取一个号码,若第1组抽出的号码为2,则所有被抽出职工的号码为________.答案2,10,18,26,34解析由系统抽样知识知第一组1~8号;第二组为9~16号;第三组为17~24号;第四组为25~32号;第五组为33~40号.第一组抽出号码为2,则依次为10,18,26,34.12.某学校三个社团的人员分布如下表(每名同学只参加一个社团):合唱社粤曲社武术社高一4530a高二151020学校要对这三个社团的活动效果进行抽样调查,按分层抽样的方法从社团成员中抽取30人,结果合唱社被抽出12人,则这三个社团人数共有________.答案150解析据题意,得这三个社团共有30÷1245+15=150(人).二、高考小题13.(2015·陕西高考)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93B.123C.137D.167答案C解析由题图知初中部女教师有110×70%=77(人);高中部女教师有150×(1-60%)=60(人).故该校女教师共有77+60=137(人).选C.14.(2014·四川高考)在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5000名居民的阅读时间的全体是()A.总体B.个体C.样本的容量D.从总体中抽取的一个样本答案A解析由题目条件知5000名居民的阅读时间的全体是总体;其中1名居民的阅读时间是个体;从5000名居民某天的阅读时间中抽取的200名居民的阅读时间是从总体中抽取的一个样本,样本容量是200.15.(2014·广东高考)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为()A.50B.40C.25D.20答案C解析由系统抽样的定义知分段间隔为100040=25.故选C.16.(2015·四川高考)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法答案C解析因为总体由有明显差异的几部分构成,所以用分层抽样法.故选C.17.(2018·全国卷Ⅲ)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.答案分层抽样解析由于从不同年龄段客户中抽取,故采用分层抽样.18.(2015·福建高考)某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为________.答案25解析男生人数为900-400=500.设应抽取男生x人,则由45900=x500,得x=25.即应抽取男生25人.19.(2017·江苏高考)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.答案18解析∵样本容量总体个数=60200+400+300+100=350,∴应从丙种型号的产品中抽取350×300=18(件).三、模拟小题20.(2018·江西省重点中学第二次联考)某超市为了检查货架上的奶粉是否合格,要从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用系统抽样方法确定所选取的5袋奶粉的编号可能是()A.6,12,18,24,30B.2,4,8,16,32C.2,10,23,35,48D.7,17,27,37,47答案D解析由系统抽样的定义知D正确.故选D.21.(2018·怀化二模)某校高三(1)班共有48人,学号依次为1,2,3,…,48,现用系统抽样的方法抽取一个容量为6的样本,已知学号为3,11,19,35,43的同学在样本中,则还有一个同学的学号应为()A.27B.26C.25D.24答案A解析根据系统抽样的规则——“等距离”抽取,则抽取的号码差相等,易知相邻两个学号之间的差为11-3=8,所以在19与35之间还有27.故选A.22.(2018·太原质检)“双色球”彩票中红色球的号码由编号为01,02,…,33的33个个体组成,一位彩民利用下面的随机数表选取6组数作为6个红色球的编号,选取方法是从随机数表第1行的第6列和第7列数字开始由左到右依次选取两个数字,则选出来的第6个红色球的编号为()49544354821737932378873520964384263491645724550688770474476721763350258392120676A.23B.09C.02D.17答案C解析从随机数表第1行的第6列和第7列数字开始由左到右依次选取两个数字,则选出的6个红色球的编号依次为21,32,09,16,17,02,故选出的第6个红色球的编号为02.故选C.23.(2018·广东肇庆三模)一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,…,10.现用系统抽样的方法抽取一个容量为10的样本,规定如果在第1组中随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同.若m=6,则在第7组中抽取的号码是()A.61B.62C.63D.64答案C解析由题设知若m=6,则在第7组数字中抽取的个位数字与13的个位数字相同,而第7组中数字编号依次为60,61,62,63,…,69,故在第7组中抽取的号码是63.故选C.24.(2018·衡水月考)某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段,如果抽取的号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,11