高考热点追踪(三)1.在数列{an}中,an=-2n2+29n+3,则此数列最大项的值是________.[解析]根据题意并结合二次函数的性质可得:an=-2n2+29n+3=-2n2-292n+3=-2n-2942+3+8418,所以n=7时,an取得最大值,最大项a7的值为108.[答案]1082.(2019·南京、盐城高三模拟)设公差不为0的等差数列{an}的前n项和为Sn.若S3=a22,且S1,S2,S4成等比数列,则a10等于________.[解析]设等差数列{an}的公差为d(d≠0),由S3=a22得3a2=a22,a2=0或3.又由S1,S2,S4成等比数列可得S22=S1S4.若a2=0,则S1=S2=a1≠0.S2=S4=a1,a2+a3+a4=3a3=0,a3=0,则d=0,故a2=0舍去;若a2=3,则S1=3-d,S2=6-d,S4=12+2d,(6-d)2=(3-d)(12+2d)(d≠0),得d=2,此时a10=a2+8d=19.[答案]193.已知log3x=-1log23,则x+x2+x3+…+xn=________.[解析]由log3x=-1log23⇒log3x=-log32⇒x=12.由等比数列求和公式得x+x2+x3+…+xn=x(1-xn)1-x=121-12n1-12=1-12n.[答案]1-12n4.(2019·淮阴质检改编)已知数列{an}满足an+1=12+an-a2n,且a1=12,则该数列的前2016项的和为________.[解析]因为a1=12,又an+1=12+an-a2n,所以a2=1,从而a3=12,a4=1,即得an=12,n=2k-1(k∈N*),1,n=2k(k∈N*),故数列的前2016项的和等于S2016=1008×1+12=1512.[答案]15125.(2019·盐城市高三第三次模拟考试)已知正项数列{an}满足an+1=1a1+a2+1a2+a3+1a3+a4+…+1an+an+1+1,其中n∈N*,a4=2,则a2019=______.[解析]an+1=1a1+a2+1a2+a3+…+1an+an+1+1,所以n≥2时,an=1a1+a2+1a2+a3+…+1an-1+an+1,两式相减得an+1-an=1an+1+an(n≥2),所以a2n+1-a2n=1(n≥2),a22019=a24+(2019-4)×1=2019,所以a2019=2019.[答案]20196.已知数列{an}满足an=1+2+3+…+nn,则数列1anan+1的前n项和为________.[解析]an=1+2+3+…+nn=n+12,1anan+1=4(n+1)(n+2)=41n+1-1n+2,所求的前n项和为412-13+13-14+…+1n+1-1n+2=412-1n+2=2nn+2.[答案]2nn+27.秋末冬初,流感盛行.某医院近30天每天入院治疗甲流的人数依次构成数列{an},已知a1=1,a2=2,且an+2-an=1+(-1)n(n∈N*),则该医院30天入院治疗甲流的人数为________.[解析]由于an+2-an=1+(-1)n,所以a1=a3=…=a29=1,a2,a4,…,a30构成公差为2的等差数列,所以a1+a2+…+a29+a30=15+15×2+15×142×2=255.[答案]2558.(2019·辽宁五校协作体联考)在数列{an}中,a1=1,an+2+(-1)nan=1,记Sn是数列{an}的前n项和,则S60=________.[解析]依题意得,当n是奇数时,an+2-an=1,即数列{an}中的奇数项依次形成首项为1、公差为1的等差数列,a1+a3+a5+…+a59=30×1+30×292×1=465;当n是偶数时,an+2+an=1,即数列{an}中的相邻的两个偶数项之和均等于1,a2+a4+a6+a8+…+a58+a60=(a2+a4)+(a6+a8)+…+(a58+a60)=15.因此,该数列的前60项和S60=465+15=480.[答案]4809.(2019·苏锡常镇四市高三调研)设公差为d(d为奇数,且d1)的等差数列{an}的前n项和为Sn,若Sm-1=-9,Sm=0,其中m3,且m∈N*,则an=________.[解析]由条件得(m-1)a1+(m-1)(m-2)2d=-9,ma1+(m-1)m2d=0,消去a1得,m-1m=-9-(m-1)(m-2)2d-m(m-1)2d,整理得(m-1)d=18,因为d为奇数,且d1,m3,m∈N*,故d=3,m=7,从而a1=-9,故an=3n-12.[答案]3n-1210.(2019·高三年级第一次模拟考试)若数列{an}满足a1=0,a4n-1-a4n-2=a4n-2-a4n-3=3,a4na4n-1=a4n+1a4n=12,其中n∈N*,且对任意n∈N*都有anm成立,则m的最小值为______.[解析]在a4n-1-a4n-2=a4n-2-a4n-3=3中令n=1,得a3-a2=a2-a1=3,因为a1=0,所以a2=3,a3=6.又a4na4n-1=12,所以a4=12a3=3.由a4n-1-a4n-2=a4n-2-a4n-3=3得a4n+3-a4n+2=a4n+2-a4n+1=3,又由已知得a4n+1=12a4n,所以a4n+2=12a4n+3,所以a4n+3=a4n+2+3=12a4n+6,a4n+4=12a4n+3=14a4n+3,所以a4n+4-4=14(a4n-4),所以{a4n-4}是首项为-1,公比为14的等比数列,所以a4n=4-14n-14,a4n-1=2a4n=8-24n-18,a4n-2=a4n-1-3=5-24n-15,a4n-3=a4n-2-3=2-24n-12.综上,an8,因为对任意n∈N*都有anm,所以m≥8,所以m的最小值为8.[答案]811.(2019·淮安质检)设数列{an}的前n项和为Sn,满足an+Sn=An2+Bn+1(A≠0).(1)已知数列{an}是等差数列,求B-1A的值;(2)若a1=32,a2=94,求证:数列{an-n}是等比数列,并求数列{an}的通项公式.[解](1)因为{an}是等差数列,所以可设an=a1+(n-1)d,an+Sn=d2n2+a1+d2n+(a1-d),可得A=d2,B=a1+d2,a1-d=1,所以B-1A=a1+d2-1d2=3d2d2=3.(2)分别令n=1,2得2a1=A+B+1=3,2a2+a1=4A+2B+1=6,解得A=12,B=32.于是an+Sn=12n2+32n+1,an+1+Sn+1=12(n+1)2+32(n+1)+1,相减得an+1-(n+1)=12(an-n).又a1-1=12≠0,故数列{an-n}是等比数列.所以an-n=12n,则an=n+12n.12.(2019·镇江市高三调研考试)已知n∈N*,数列{an}的各项均为正数,前n项的和为Sn,且a1=1,a2=2,设bn=a2n-1+a2n.(1)如果数列{bn}是公比为3的等比数列,求S2n;(2)如果对任意n∈N*,Sn=a2n+n2恒成立,求数列{an}的通项公式;(3)如果S2n=3(2n-1),数列{anan+1}为等比数列,求数列{an}的通项公式.[解](1)b1=a1+a2=1+2=3,S2n=(a1+a2)+(a3+a4)+…+(a2n-1+a2n)=b1+b2+…+bn=3(1-3n)1-3=3(3n-1)2.(2)由2Sn=a2n+n得,当n≥2时,2Sn-1=a2n-1+n-1,则2an=2Sn-2Sn-1=a2n+n-(a2n-1+n-1)=a2n-a2n-1+1,(an-1)2-a2n-1=0,(an-an-1-1)(an+an-1-1)=0,故an-an-1=1或an+an-1=1.(*)下面证明an+an-1=1对任意的n∈N*恒不成立.事实上,因为a1+a2=3,所以an+an-1=1不恒成立;若存在n∈N*,使an+an-1=1,设n0是满足上式的最小正整数,即an0+an0-1=1,显然n0>2,且an0-1∈(0,1),则an0-1+an0-2≠1,则由(*)式知,an0-1-an0-2=1,则an0-2<0,矛盾.故an+an-1=1对任意的n∈N*恒不成立,所以an-an-1=1对任意的n∈N*恒成立.因此{an}是以1为首项,1为公差的等差数列,所以an=1+(n-1)=n.(3)因为数列{anan+1}为等比数列,设公比为q,则当n≥2时,anan+1an-1an=an+1an-1=q.即{a2n-1},{a2n}分别是以1,2为首项,q为公比的等比数列,故a3=q,a4=2q.令n=2,有S4=a1+a2+a3+a4=1+2+q+2q=9,则q=2.当q=2时,a2n-1=2n-1,a2n=2×2n-1=2n,bn=a2n-1+a2n=3×2n-1,此时S2n=(a1+a2)+(a3+a4)+…+(a2n-1+a2n)=b1+b2+…+bn=3(1-2n)1-2=3(2n-1).综上所述,an=2n-12,当n为奇数,2n2,当n为偶数.13.(2019·南京、盐城高三模拟)已知数列{an}的前n项和为Sn,且对任意正整数n都有an=(-1)nSn+pn(p为常数,p≠0).(1)求p的值;(2)求数列{an}的通项公式;(3)设集合An={a2n-1,a2n},且bn,cn∈An,记数列{nbn},{ncn}的前n项和分别为Pn,Qn.若b1≠c1,求证:对任意n∈N*,Pn≠Qn.[解](1)由a1=-S1+p,得a1=p2,由a2=S2+p2,得a1=-p2,所以p2=-p2.又p≠0,所以p=-12.(2)由an=(-1)nSn+-12n,得an=(-1)nSn+-12n,①an+1=-(-1)nSn+1+-12n+1,②①+②得an+an+1=(-1)n(-an+1)+12×-12n.当n为奇数时,an+an+1=an+1-12×12n,所以an=-12n+1,当n为偶数时,an+an+1=-an+1+12×12n,所以an=-2an+1+12×12n=2×12n+2+12×12n=12n.所以an=-12n+1,n为奇数,n∈N*,12n,n为偶数,n∈N*.(3)证明:An=-14n,14n,由于b1≠c1,则b1与c1一正一负,不妨设b10,则b1=14,c1=-14,则Pn=b1+2b2+3b3+…+nbn≥14-242+343+…+n4n.设S=242+343+…+n4n,则14S=243+…+n-14n+n4n+1,两式相减得34S=242+143+…+14n-n4n+1=116+116×1-14n-11-14.