计量经济学第十章时间序列计量经济模型引子:是真回归还是伪回归?经典回归分析的做法是:首先采用普通最小二乘法(OLS)对回归模型进行估计,然后根据可决系数或F检验统计量值的大小来判定变量之间的相依程度,根据回归系数估计值的t统计量对系数的显著性进行判断,最后在回归系数显著不为零的基础上对回归系数估计值给予经济解释。为了分析某国的个人可支配总收入与个人消费总支出的关系,用OLS法作关于的线性回归,得到如下结果:-174.440.9672ttEI20.9941DW0.532Rt(-7.481)(119.87)EIIE从回归结果来看,非常高,个人可支配总收入的回归系数t统计量也非常大,边际消费倾向符合经济假设。凭借经验判断,这个模型的设定是好的,应是非常满意的结果。准备将这个计量结果用于经济结构分析和经济预测。可是有人提出,这个回归结果可能是虚假的!可能只不过是一种“伪回归”!2RI“要千万小心!”这里用时间序列数据进行的回归,究竟是真回归还是伪回归呢?为什么模型、样本、数据、检验结果都很理想,却可能得到“伪回归”的结果呢?时间序列数据被广泛地运用于计量经济研究。经典时间序列分析和回归分析有许多假定前提,如序列的平稳性、正态性等。直接将经济变量的时间序列数据用于建模分析,实际上隐含了上述假定,在这些假定成立的条件下,据此而进行的t检验、F检验等才具有较高的可靠度。越来越多的经验证据表明,经济分析中所涉及的大多数时间序列是非平稳的。问题:●如果直接将非平稳时间序列当作平稳时间序列来进行分析,会造成什么不良后果;●如何判断一个时间序列是否为平稳序列;●当我们在计量经济分析中涉及到非平稳时间序列时,应作如何处理?第十章时间序列计量经济模型本章主要讨论:时间序列的基本概念时间序列平稳性的单位根检验协整第一节时间序列基本概念本节基本内容:●伪回归问题●随机过程的概念●时间序列的平稳性一、伪回归问题传统计量经济学模型的假定条件:序列的平稳性、正态性。所谓“伪回归”,是指变量间本来不存在相依关系,但回归结果却得出存在相依关系的错误结论。20世纪70年代,Grange、Newbold研究发现,造成“伪回归”的根本原因在于时序序列变量的非平稳性二、随机过程有些随机现象,要认识它必须研究其发展变化过程,随机现象的动态变化过程就是随机过程。例如,考察一段时间内每一天的电话呼叫次数,需要考察依赖于时间t的随机变量,{}就是一随机过程。又例如,某国某年的GNP总量,是一随机变量,但若考查它随时间变化的情形,则{}就是一随机过程。ttGNPtttT()随机过程的严格定义若对于每一特定的,为一随机变量,则称这一族随机变量{}为一个随机过程。若为一区间,则{}为一连续型随机过程。若为离散集合,如或,则{}为离散型随机过程。离散型时间指标集的随机过程通常称为随机型时间序列,简称为时间序列。tYtYYttYTT(0,1,2,T=)(,-2,-1,0,1,2,T=)三、时间序列的平稳性所谓时间序列的平稳性,是指时间序列的统计规律不会随着时间的推移而发生变化。直观上,一个平稳的时间序列可以看作一条围绕其均值上下波动的曲线。从理论上,有两种意义的平稳性,一是严格平稳,另一种是弱平稳。严格平稳是指随机过程{}的联合分布函数与时间的位移无关。设{}为一随机过程,为任意实数,若联合分布函数满足:则称{}为严格平稳过程,它的分布结构不随时间推移而变化。tY11211ntttt+ht+hnnnY,Y,...,YY,...,YFy,...,yFy,...,ytYn,htY弱平稳是指随机过程{}的期望、方差和协方差不随时间推移而变化。若{}满足:则称{}为弱平稳随机过程。在一般的分析讨论中,平稳性通常是指弱平稳。Cov(,)Cov(,)(,0)stt-st+hs+hYYYYrt-sr20Var()tYrσtYYttYEYμ()t时间序列的非平稳性是指时间序列的统计规律随着时间的位移而发生变化,即生成变量时间序列数据的随机过程的特征随时间而变化。在实际中遇到的时间序列数据很可能是非平稳序列,而平稳性在计量经济建模中又具有重要地位,因此有必要对观测值的时间序列数据进行平稳性检验。第二节时间序列平稳性的单位根检验本节基本内容:●单位根检验●Dickey-Fuller检验●AugmentedDickey-Fuller检验一、单位根过程为了说明单位根过程的概念,我们侧重以AR(1)模型进行分析:根据平稳时间序列分析的理论可知,当时,该序列{}是平稳的,此模型是经典的Box-Jenkins时间序列AR(1)模型。Yt11tt-tYφYεt当,则序列的生成过程变为如下随机游动过程(RandomWalkProcess):其中{}独立同分布且均值为零、方差恒定为。随机游动过程的方差为:当时,序列的方差趋于无穷大,说明随机游动过程是非平稳的。1-1-2-112-12Var()Var()Var()Var()ttttttttYYεYεεεε...εεtσttY=Yε1tt2单位根过程如果一个序列是随机游动过程,则称这个序列是一个“单位根过程”。为什么称为“单位根过程”?将一阶自回归模型表示成如下形式:其中,是滞后算子,即-1-(1-)tttttYYεLYε或-1ttLYYL根据模型的滞后多项式,可以写出对应的线性方程:(通常称为特征方程)该方程的根为:。当时序列是平稳的,特征方程的根满足条件;当时,序列的生成过程变为随机游动过程,对应特征方程的根,所以通常称序列含有单位根,或者说序列的生成过程为“单位根过程”。1-L1-0ZZ11Z11Z结论:随机游动过程是非平稳的。因此,检验序列的非平稳性就变为检验特征方程是否有单位根,这就是单位根检验方法的由来。从单位根过程的定义可以看出,含一个单位根的过程,其一阶差分:是一平稳过程,像这种经过一次差分后变为平稳的序列称为一阶单整序列(IntegratedProcess),记为。-1-ttttYYYuItY(1)有时,一个序列经一次差分后可能还是非平稳的,如果序列经过二阶差分后才变成平稳过程,则称序列为二阶单整序列,记为。一般地,如果序列经过次差分后平稳,而次差分却不平稳,那么称为阶单整序列,记为,称为整形阶数。特别地,若序列本身是平稳的,则称序列为零阶单整序列,记为。tYI2tY()tYItYd()I0tY()ddd1d二、Dickey-Fuller检验(DF检验)大多数经济变量呈现出强烈的趋势特征。这些具有趋势特征的经济变量,当发生经济振荡或冲击后,一般会出现两种情形:●受到振荡或冲击后,经济变量逐渐又回它们的长期趋势轨迹;●这些经济变量没有回到原有轨迹,而呈现出随机游走的状态。若我们研究的经济变量遵从一个非平稳过程,一个变量对其他变量的回归可能会导致伪回归结果。这是研究单位根检验的重要意义所在。假设数据序列是由下列自回归模型生成的:其中,独立同分布,期望为零,方差为,我们要检验该序列是否含有单位根。检验的原假设为:回归系数的OLS估计为:检验所用的统计量为:tε-1tttYY2σ0H:1-12-1ˆtttyyyˆˆ-ˆtσ在成立的条件下,t统计量为:Dickey、Fuller通过研究发现,在原假设成立的情况下,该统计量不服从t分布。所以传统的t检验法失效。但可以证明,上述统计量的极限分布存在,一般称其为Dickey-Fuller分布。根据这一分布所作的检验称为DF检验,为了区别,t统计量的值有时也称为值。ˆˆ-1ˆt0H:1Dickey、Fuller得到DF检验的临界值,并编制了DF检验临界值表供查。在进行DF检验时,比较t统计量值与DF检验临界值,就可在某个显著性水平上拒绝或接受原假设。在实际应用中,可按如下检验步骤进行:(1)根据观察数据,用OLS法估计一阶自回归模型,得到回归系数的OLS估计:-1tttYYε121ˆtttyyy(2)提出假设检验用统计量为常规t统计量,(3)计算在原假设成立的条件下t统计量值,查DF检验临界值表得临界值,然后将t统计量值与DF检验临界值比较:若t统计量值小于DF检验临界值,则拒绝原假设,说明序列不存在单位根;若t统计量值大于或等于DF检验临界值,则接受原假设,说明序列存在单位根。0H:1ˆˆ-ˆt1H:1Dickey、Fuller研究发现,DF检验的临界值同序列的数据生成过程以及回归模型的类型有关,因此他们针对如下三种方程编制了临界值表,后来Mackinnon把临界值表加以扩充,形成了目前使用广泛的临界值表,在EViews软件中使用的是Mackinnon临界值表。这三种模型如下:模型I:模型Ⅱ:模型Ⅲ:-1tttYYε-1tttYYε-1tttYtYεDF检验存在的问题是,在检验所设定的模型时,假设随机扰动项不存在自相关。但大多数的经济数据序列是不能满足此项假设的,当随机扰动项存在自相关时,直接使用DF检验法会出现偏误,为了保证单位根检验的有效性,人们对DF检验进行拓展,从而形成了扩展的DF检验(AugmentedDickey-FullerTest),简称为ADF检验。三、AugmentedDickey-Fuller检验(ADF检验)假设基本模型为如下三种类型:模型I:模型Ⅱ:模型Ⅲ:其中为随机扰动项,它可以是一个一般的平稳过程。-1tttYY-1tttYY-1tttYtYt为了借用DF检验的方法,将模型变为如下式:模型I:模型Ⅱ:模型Ⅲ:可以证明,在上述模型中检验原假设的t统计量的极限分布,与DF检验的极限分布相同,从而可以使用相同的临界值表,这种检验称为ADF检验。-1-1pttititiYYY-1-1pttititiYYY-1-1pttititiYtYY根据《中国统计年鉴2004》,得到我国1978—2003年的GDP序列(如表10.1),检验其是否为平稳序列。表10.1中国1978—2003年度GDP序列例10.1时序图见图10.1由GDP时序图可以看出,该序列可能存在趋势项,因此选择ADF检验的第三种模型进行检验。估计结果如下:ttttGDP-1565.141355.62-0.02883GDP1.016GDP-0.460382GDPt在原假设下,单位根的t检验统计量的值为在1%、5%、10%三个显著性水平下,单位根检验的Mackinnon临界值分别为-4.4167、-3.6219、-3.2474,显然,上述t检验统计量值大于相应临界值,从而不能拒绝,表明我国1978——2003年度GDP序列存在单位根,是非平稳序列。ˆˆ--0.028830-0.786011ˆ0.036679t第三节协整本节基本内容:●协整的概念●协整检验●误差修正模型一、协整的概念引例:一个货币需求分析的例子。依照经典理论,一国或一地区的货币需求量主要取决于规模变量和机会成本变量,即实际收入、价格水平以及利率。以对数形式的计量经济模型将货币需求函数描述出来,形式为:其中,为货币需求,为价格水平,为实际收入总额,为利率,为扰动项,为模型参数。r0123lnlnlntttttMPYruMPYu问题:估计出来的货币需求函数是否揭示了货币需求的长期均衡关系?(1)如果上述货币需求函数是适当的,那么货币需求对长期均衡关系的偏离将是暂时的,扰动项序列是平稳序列,估计出来的货币需求函数就揭示了货币需求的长期均衡关系。(2)相反,如果扰动项序列有随机趋势而呈现非平稳现象,那么模型中的误差会逐步积聚,使得货币需求对长期均衡关系的偏离在长时期内不会消失。上述货币需求模型是否具有实际价值,关键在于扰动项序列是否平稳。货币供给量、