1分式要题随堂演练1.(2018·武汉中考)若分式1x+2在实数范围内有意义,则实数x的取值范围是()A.x>-2B.x<-2C.x=-2D.x≠-22.(2018·内江中考)已知:1a-1b=13,则abb-a的值是()A.13B.-13C.3D.-33.(2017·泰安中考)化简(1-2x-1x2)÷(1-1x2)的结果为()A.x-1x+1B.x+1x-1C.x+1xD.x-1x4.(2018·滨州中考)若分式x2-9x-3的值为0,则x的值为________.5.(2018·衡阳中考)计算:x2x+1-1x+1=__________.6.(2018·青岛中考)化简:(x2+1x-2)·xx2-1.7.(2018·临沂中考)计算:(x+2x2-2x-x-1x2-4x+4)÷x-4x.8.(2018·泰安中考)先化简,再求值:m2-4m+4m-1÷(3m-1-m-1),其中m=2-2.9.(2018·烟台中考)先化简,再求值:(1+x2+2x-2)÷x+1x2-4x+4.其中x满足x2-2x-5=0.2参考答案1.D2.C3.A4.-35.x-16.解:原式=(x2+1x-2xx)·x(x+1)(x-1)=(x-1)2x·x(x+1)(x-1)=x-1x+1.7.解:原式=[x+2x(x-2)-x-1(x-2)2]·xx-4=[(x+2)(x-2)x(x-2)2-x(x-1)x(x-2)2]·xx-4=x2-4-x2+xx(x-2)2·xx-4=x-4x(x-2)2·xx-4=1(x-2)2.8.解:原式=(m-2)2m-1÷3-m2+1m-1=(m-2)2m-1÷(2+m)(2-m)m-1=(m-2)2m-1·m-1(2+m)(2-m)=2-m2+m.当m=2-2时,原式=2-2+22+2-2=22-1.9.解:原式=x2+xx-2·(x-2)2x+1=x(x+1)x-2·(x-2)2x+1=x2-2x.∵x2-2x-5=0,∴x2-2x=5,∴原式=5.