1课时达标训练(十六)“数列”专题提能课A组——易错清零练1.等差数列{an},{bn}的前n项和为Sn,Tn.若SnTn=7n+14n+27(n∈N*),则a7b7=________.解析:a7b7=a7+a7b7+b7=S13T13=7×13+14×13+27=9279.答案:92792.设数列{an}的前n项和为Sn.若S2=7,an+1=2Sn+1,n∈N*,则an=____________.解析:由an+1=2Sn+1,得an=2Sn-1+1(n≥2),两式相减得an+1=3an(n≥2),由a2=2a1+1,得S2=3a1+1=7,解得a1=2,a2=5,所以an=2,n=1,5·3n-2,n≥2.答案:2,n=1,5·3n-2,n≥23.已知一个等差数列{an}的通项公式为an=25-5n,则数列{|an|}的前n项和为____________.解析:由an≥0,得n≤5,∴{an}前5项为非负,当n≤5时Sn=|a1|+|a2|+…+|an|=a1+a2+…+an=n(45-5n)2,当n≥6时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+a5-a6-…-an=2(a1+a2+…+a5)-a1-a2-a3-a4-a5-a6-…-an=-n(45-5n)2+100,综上所述,Sn=n(45-5n)2,n≤5,-n(45-5n)2+100,n≥6.答案:Sn=n(45-5n)2,n≤5,-n(45-5n)2+100,n≥64.若{an}是等差数列,首项a10,a2018a2019-1,则使前n项和Sn0成立的最大正整数n是________.2解析:∵{an}为等差数列,a10,a2018a2019-1,∴{an}表示首项为正数,公差为负数的单调递减等差数列,且|a2018||a2019|,等价于a20180,a20190且a2018+a20190.∴在等差数列{an}中,a2018+a2019=a1+a40360,S4036=4036(a1+a4036)2>0,S4037=4037(a1+a4037)2=4037a20190,∴使Sn>0成立的最大自然数n是4036.答案:4036B组——方法技巧练1.(2019·海门中学模拟)设数列{an}和{bn}满足bn=22an+3,{an}的前n项和为Sn,{bn}的前n项积为Tn,已知数列{an}是各项均为整数且公差为正整数的等差数列,若S23+a24=4,则满足Tn<2019的所有n的取值的和为________.解析:法一:因为数列{an}是公差为正整数的等差数列,所以可设其公差为d(d∈N*),则an=a1+(n-1)d.由S23+a24=4得,10a21+24da1+18d2-4=0,(*)由Δ=(24d)2-40(18d2-4)≥0得d2≤109,即-103≤d≤103.又d∈N*,所以d=1,代入(*)得5a21+12a1+7=0,即(5a1+7)(a1+1)=0.因为a1∈Z,所以a1=-1,所以an=n-2,所以bn=22an+3=22n-1,所以Tn=b1b2·…·bn=21+3+5+…+(2n-1)=2n2.由Tn<2019得2n2<2019,因为{2n2}是递增数列,且当n=3时,2n2=29<2019,当n=4时,2n2=216=32×2048>2019,所以满足Tn<2019的所有n的取值为1,2,3,所以所有满足条件的n的取值的和为6.法二:因为数列{an}是公差为正整数的等差数列,所以可设其公差为d(d∈N*),则an=a2+(n-2)d.由S23+a24=4得,10a22+4da2+4d2-4=0,(*)由Δ=(4d)2-40(4d2-4)≥0得d2≤109,即-103≤d≤103,又d∈N*,所以d=1,代入(*)得5a22+2a2=0,即a2(5a2+2)=0.因为a2∈Z,所以a2=0.所以an=a2+(n-2)×1=n-2,所以bn=22an+3=22n-1,所以Tn=b1b2·…·bn=21+3+5+…+(2n-1)=2n2.以下同法一.答案:632.若公比不为1的等比数列{an}满足log2(a1a2…a13)=13,等差数列{bn}满足b7=a7,则b1+b2+…+b13的值为________.解析:∵log2(a1a2…a13)=13,∴log2a137=13⇒a7=2=b7,∴b1+b2+…+b13=13b7=26.答案:263.已知数列{an}满足a2n-1+1≤a2n≤2a2n+1,n∈N*,a1=1,若前n项和为Sn,则S11的最小值为________.解析:要使Sn最小,则数列各项为1,2,1,2,1,2,1,2,…,所以当S11的最小值为16.答案:164.(2019·南京盐城一模)若数列{an}满足a1=0,a4n-1-a4n-2=a4n-2-a4n-3=3,a4na4n-1=a4n+1a4n=12,其中n∈N*,且对任意n∈N*都有an<m成立,则m的最小值为________.解析:在a4n-1-a4n-2=a4n-2-a4n-3=3中令n=1,得a3-a2=a2-a1=3,因为a1=0,所以a2=3,a3=6.又a4na4n-1=12,所以a4=12a3=3.由a4n-1-a4n-2=a4n-2-a4n-3=3得a4n+3-a4n+2=a4n+2-a4n+1=3,又由已知得a4n+1=12a4n,所以a4n+2=12a4n+3,所以a4n+3=a4n+2+3=12a4n+6,a4n+4=12a4n+3=14a4n+3,所以a4n+4-4=14(a4n-4),所以{a4n-4}是首项为-1,公比为14的等比数列,所以a4n=4-14n-1<4,a4n-1=2a4n=8-24n-1<8,a4n-2=a4n-1-3=5-24n-1<5,a4n-3=a4n-2-3=2-24n-1<2.综上,an<8,因为对任意n∈N*都有an<m,所以m≥8,所以m的最小值为8.答案:85.已知{an}是递增数列,其前n项和为Sn,a1>1,且10Sn=(2an+1)(an+2),n∈N*.(1)求数列{an}的通项an;(2)是否存在m,n,k∈N*,使得2(am+an)=ak成立?若存在,写出一组符合条件的m,n,k的值;若不存在,请说明理由.解:(1)由10a1=(2a1+1)(a1+2),得2a21-5a1+2=0,解得a1=2或a1=12.又a1>1,所以a1=2.因为10Sn=(2an+1)(an+2),4所以10Sn=2a2n+5an+2,故10an+1=10Sn+1-10Sn=2a2n+1+5an+1+2-2a2n-5an-2,整理,得2(a2n+1-a2n)-5(an+1+an)=0,即(an+1+an)[2(an+1-an)-5]=0.因为{an}是递增数列且a1=2,所以an+1+an≠0,因此an+1-an=52.所以数列{an}是以2为首项,52为公差的等差数列,所以an=2+52(n-1)=12(5n-1).(2)满足条件的正整数m,n,k不存在,理由如下:假设存在m,n,k∈N*,使得2(am+an)=ak,则5m-1+5n-1=12(5k-1),整理,得2m+2n-k=35,()虽然,()式左边为整数,所以()式不成立.故满足条件的正整数m,n,k不存在.6.数列{an},{bn},{cn}满足:bn=an-2an+1,cn=an+1+2an+2-2,n∈N*.(1)若数列{an}是等差数列,求证:数列{bn}是等差数列;(2)若数列{bn},{cn}都是等差数列,求证:数列{an}从第二项起为等差数列;(3)若数列{bn}是等差数列,试判断当b1+a3=0时,数列{an}是否成等差数列?证明你的结论.解:(1)证明:设数列{an}的公差为d,∵bn=an-2an+1,∴bn+1-bn=(an+1-2an+2)-(an-2an+1)=(an+1-an)-2(an+2-an+1)=d-2d=-d,∴数列{bn}是公差为-d的等差数列.(2)证明:当n≥2时,cn-1=an+2an+1-2,∵bn=an-2an+1,∴an=bn+cn-12+1,∴an+1=bn+1+cn2+1,∴an+1-an=bn+1+cn2-bn+cn-12=bn+1-bn2+cn-cn-12,∵数列{bn},{cn}都是等差数列,5∴bn+1-bn2+cn-cn-12为常数,∴数列{an}从第二项起为等差数列.(3)数列{an}成等差数列.∵bn=an-2an+1,b1+a3=0,令n=1,a1-2a2=-a3,即a1-2a2+a3=0,∴bn+1=an+1-2an+2,bn+2=an+2-2an+3,∴2bn+1-bn-bn+2=(2an+1-an-an+2)-2(2an+2-an+1-an+3),∵数列{bn}是等差数列,∴2bn+1-bn-bn+2=0,∴2an+1-an-an+2=2(2an+2-an+1-an+3),∵a1-2a2+a3=0,∴2an+1-an-an+2=0,∴数列{an}是等差数列.C组——创新应用练1.(2019·常州期末)数列{an},{bn}满足bn=an+1+(-1)nan(n∈N*),且数列{bn}的前n项和为n2,已知数列{an-n}的前2018项和为1,那么数列{an}的首项a1=________.解析:由数列{bn}的前n项和为n2,可得bn=2n-1,则b2n-1=a2n-a2n-1=4n-3①,b2n=a2n+1+a2n=4n-1②,b2n+1=a2n+2-a2n+1=4n+1③,②-①,得a2n+1+a2n-1=2,②+③,得a2n+2+a2n=8n.因为数列{an-n}的前2018项和为1,所以a1+a2+…+a2018-(1+2+…+2018)=1,a1+a2+…+a2018=(1+2+…+2018)+1=1009×2019+1,所以a1+1008+a2+8×(2+4+…+1008)=1009×2019+1,又b1=1=a2-a1,即a2=a1+1,所以2a1+1008+8×504×10102=1009×2019,解得a1=32.答案:322.对于一切实数x,令[x]为不大于x的最大整数,则函数f(x)=[x]称为高斯函数或取整函数.若an=fn3,n∈N*,Sn为数列{an}的前n项和,则S3n=__________.解析:由题意,当n=3k,n=3k+1,n=3k+2时均有an=fn3=n3=k,所以S3n=0+0+1+1+1,3个+2+2+2,3个+…+(n-1)+(n-1)+(n-1),3个+n=3×1+n-12×(n-1)+n=32n2-12n.答案:32n2-12n3.已知数列{an}是各项均为正数的等比数列,其前n项和为Sn,点An,Bn均在函数f(x)6=log2x的图像上,An的横坐标为an,Bn的横坐标为Sn+1,直线AnBn的斜率为kn.若k1=1,k2=12,则数列{an·f(an)}的前n项和Tn=________.解析:由题意可知A1(a1,log2a1),A2(a2,log2a2),B1(S1+1,log2(S1+1)),B2(S2+1,log2(S2+1)),∴k1=log2(S1+1)-log2a1S1+1-a1=1,k2=log2(S2+1)-log2a2S2+1-a2=12,解得a1=1,a2=2,∴an=2n-1,f(an)=log22n-1=n-1,∴an·f(an)=(n-1)2n-1.∴Tn=0×20+1×21+2×22+…+(n-2)×2n-2+(n-1)×2n-1①,2Tn=0×21+1×22+2×23+…+(n-2)×2n-1+(n-1)×2n②,由①-②得-Tn=2+22+23+…+2n-1-(n-1)×2n,所以-Tn=2(1-2n-1)1-2-(n-1)×2n,整理得Tn=