通风瓦检工培训—瓦斯防治矿井瓦斯是煤矿生产中必然遇到的有害气体,是煤矿五大自然灾害之一,在采掘过程中瓦斯大量涌出,可造成作业地点的瓦斯超限,当井下空气中瓦斯浓度较高时,会相对地降低空气中的氧气浓度,可以造成作业人员窒息。如果忽视矿井通风与瓦斯管理和不严格执行《规程》有关规定,当瓦斯与空气混合达到一定浓度时,遇火源能燃烧或爆炸。瓦斯的存在易造成煤与瓦斯突出,严重影响和威胁矿井生产安全,一旦发生重、特大瓦斯灾害事故,,就会给国家财产和职工的生命安全造成巨大损失。所以说,瓦斯是煤矿第一大杀手。第三章瓦斯防治第一节瓦斯的性质与赋存状态矿井瓦斯是指煤矿在生产过程中从煤(岩)层中涌出以甲烷为主的各种有毒有害气体的总称。有时单独指甲烷(沼气)。根据气体分析结果表明,其中构成的主要成分是以甲烷为主,约占总量的80~90%左右,它是一种最简单的炭氢化合物,又是各种有害气体混合物。因沼泽之气而得名,俗称沼气,其化学分子为CH4。根据人们群众长期形成的历史习惯把沼气也称为瓦斯。瓦斯的成分且由基本成分和其它成分所组成,其成分组成为:甲烷(沼气)(CH4)、二氧化碳(CO2)、硫化氢(H2S)二氧化氮(NO2)、一氧化碳(CO)、二氧化硫(SO2)氨气(NH3)、碳氢化合物(乙烷、丙烷、丁烷)。一、矿井瓦斯的概念依据瓦斯成分与其性质的不同,大致可分为三种类型:(一)具有可燃、可爆性气体,主要是沼气;(二)具有窒息性气体,主要是二氧化碳;(三)具有毒、有害气体,主要是一氧化碳、硫化氢、二氧化硫、二氧化氮。上述这些有毒有害气体中,绝大多数矿井中沼气约占瓦斯总量的80%以上,其次才是二氧化碳。煤矿通常所说的瓦斯实际是指沼气,矿井瓦斯的这种可燃性、爆炸性、窒息性,是煤矿安全生产中的主要威胁。矿井瓦斯来源于煤(岩)层,瓦斯的生成是在成煤过程中植物的纤维质被分解、发酵,逐渐生成腐植酸,与此同时生成瓦斯,属于生物化学造气时期;此后,在煤的炭化变质过程中,随着化学成分和结构的变化,从泥炭转变成褐煤、烟煤到无烟煤,属于变质作用造气时期。同时继续有大量瓦斯伴随生成。当生成一吨煤的一种伴生气体,它的形成要经历两个不同的造气时期,古代植物遗体在形成泥炭过程中,由于厌氧菌的作用,的同时,大约生成1000m3以上的瓦斯(沼气)伴随生成。在长期的地质年代里,由于在生化作用造气时期泥炭的埋藏较浅,覆盖层的胶结固化也不好,因地层变动造成的断裂和裂隙,大部分瓦斯通过煤层裂隙自然逸散到大气中去了,仅仅只有一部分则被保存在煤体和围岩中。其次,煤层的倾角大,埋藏较浅,顶板岩层透气性好,而煤层中被保存下来的瓦斯量就少;反之,煤层中保留下来的瓦斯就多。当人们建井开拓井巷、从事采掘作业时,瓦斯就会不断地从煤(岩)层中涌向采掘空间,这就是矿井瓦斯的主要来源。当在成煤过程中所伴随生成的瓦斯不逸散,如果大部分都被保存下来的话,那么我们现在就无法开采其煤炭。由于煤层赋存条件所致,煤层有露头时,瓦斯易于排放,无露头时,顶板岩性致密,其瓦斯不易排放,并易于保存。煤层倾角越小瓦斯运移的途径长。如成煤后地壳上升,剥蚀作用加强为煤层瓦斯向地表运移提供了条件,而大部分瓦斯随着裂隙逸散到大气中去了。因此,在其他条件大致相同的情况下,在同一开采深度上,煤层倾角小,煤层所含瓦斯越多。反之,煤层倾角大,且煤层瓦斯含量就越小。二、瓦斯的性质瓦斯通常指甲烷,分子式为CH4,它是一种无色、无味的气体。瓦斯具有燃烧和爆炸性。三、矿井瓦斯危害四、瓦斯的赋存(一)瓦斯窒息。(二)瓦斯的燃烧和爆炸。(一)瓦斯在煤层中的垂直分带在漫长地质年代中,变质作用过程中生成的瓦斯在其压力差与浓度差的驱动下不断向古大气中运移,而地表空气通过渗透和扩散也不断向煤层深部运移,这就导致沿煤层垂深出现了特征明显的四个分带,即CO—N带、N带、N—CH和CH带,见图1—1。各带的气体成分组成与含量见表1—1。按照各带的成因和组分变化规律,第Ⅰ、Ⅱ、Ⅲ带又统称为瓦斯风化带,第Ⅳ带称为甲烷带。图3-1煤矿瓦斯垂直分布图Ⅰ、Ⅱ、Ⅲ、瓦斯风化带,Ⅳ甲烷带确定瓦斯风化带和甲烷带的深度是很重要的,因为在甲烷带内,煤层中瓦斯含量、瓦斯压力、以及在开采条件变化不大的前提下的瓦斯涌出量都随着深度的增加而有规律地增大。研究这些规律及影响因素,是防治矿井瓦斯灾害的基本工作之一。表3-1煤层垂向各瓦斯带主要特征(二)瓦斯的赋存。瓦斯在煤层及围岩中的赋存状态有两种,一种是游离状态,另一个是吸附状态。如图3-2所示。图3-2煤矿瓦斯赋存状态示意图1―游离瓦斯;2―吸着附瓦斯;3―吸收瓦斯;4―煤体;5―空隙1、游离状态(也称自由状态)。这种瓦斯以完全自由的气体状态存在于煤体或围岩的较大裂缝、孔隙或空洞之中(如图1—1所示)。游离瓦斯可以自由运动或从煤(岩)层的裂隙中散放出来,因此表现出一定压力。煤体内游离瓦斯的多少取决于储存空间的容积瓦斯压力及围岩温度等因素。2、吸附状态(也称结合状态)。按其结合的形式不同,又分为吸着和吸收两种状态。吸着状态是瓦斯气体分子在其与煤粒固体分子间的引力作用而被吸着在煤体孔隙内表面上所呈现的状态,其形成一层很薄的吸附层(如图中2所示);吸收状态是瓦斯分子进入煤体胶粒结构内部与煤分子结合而呈现的一种状态,其类似气体溶解于液体的现象(如图中3所示)。吸附状态存在的瓦斯量的多少,取决于煤的结构特点、炭化程度等。游离状态与吸附状态的瓦斯并不是固定不变的,而是处于不断交换的动平衡状态。当条件发生变化,这一平衡就会遭到破坏。在压力降低、温度升高或煤体结构受到破坏时,部分吸附状态的瓦斯就转化为游离瓦斯,这种现象叫解吸;反之,当压力增大或温度降低时,部分游离的瓦斯也是转化为吸附状态,这种现象叫吸附。第二节矿井瓦斯涌出煤层瓦斯含量指煤层在自然条件下单位重量或单位体积所含有的瓦斯量,一般用m3/t或m3/m3表示。一、煤层瓦斯含量二、煤层瓦斯含量的主要影响因素煤层瓦斯含量的大小决定于两个方面的因素,一是在成煤过程中伴生的气体量和煤的含瓦斯能力,二是煤系地层保存瓦斯的条件。(一)煤的变质程度煤的变质程度决定了成煤过程中伴生的气体量和煤的含瓦斯能力。(二)煤系地层保存瓦斯的条件当前煤层瓦斯含量的大小,主要取决于煤系地层保存瓦斯的条件。1、煤层有无露头。煤层有无露头对煤层瓦斯含量有很大影响。有露头一般存在着瓦斯风化带,在该带内瓦斯沿煤层向大气中运移阻力较小,煤层的瓦斯很容易放散到大气中去。所以,地表有煤层露头时,该煤层的瓦斯含量会很低。2、煤层埋藏深度。煤层埋藏深度增加,保存瓦斯的条件就变好,煤层吸附瓦斯的能力就加大,瓦斯放散就越困难。在甲烷带内,煤层的瓦斯含量和瓦斯压力随埋藏深度的增加而增加。瓦斯压力梯度是指煤层埋藏深度每增加1m,煤层内瓦斯压力的增加值。3、围岩的透气性。煤层上覆和下伏岩层的透气性,对煤层瓦斯含量影响很大。煤层被透气性很低的岩层包围,煤层的瓦斯放散不出去,瓦斯含量就高;反之,瓦斯含量就低。4、煤层的地质史。成煤有机物沉积以后,直到现今的变质作用阶段,经历了漫长的地质年代。其间,地层多次下降或上升,覆盖层加厚或遭受剥蚀,海相与陆相交替变化并伴有地质构造运动等。这些地质过程的形式和持续的时间对煤层瓦斯含量影响很大。一般来说,以下降、覆盖层加厚和海相沉积为主要变化的地质活动过程,会导致煤层瓦斯含量增高;反之,煤层瓦斯含量则降低。5、地质构造及其条件。闭合的和倾伏的背斜或穹窿,通常是储瓦斯构造,在其轴部区域形成瓦斯包,即所谓的“气顶”。构造形成的煤层局部变厚的大型煤包,往往也是瓦斯包。断层对煤层瓦斯含量的影响与其性质有关,开放性断层(一般是指张性、张扭性、或导水的压性断层等)会导致煤层瓦斯含量降低;封闭性断层(压性、压扭性不导水断层)会导致煤层瓦斯含量增高。煤层倾角小,瓦斯沿层运移的路径长,阻力大,煤层瓦斯不易流失,导致煤层瓦斯含量大;反之,则煤层瓦斯含量小。地下水活跃的矿区,通常煤层的瓦斯含量小。地下水对煤层瓦斯含量的降低作用表现在三个方面:一是长期的地下水活动,带走了部分溶解的瓦斯;二是地下水渗透的通道,同样可以成为瓦斯渗透的通道;三是地下水带走了溶解的矿物,使围岩及煤层卸压,透气性增大,造成了瓦斯的流失。(一)矿井瓦斯涌出的形式当煤层被开采时,煤体受到破坏,贮存在煤体内的部分瓦斯就会离开煤体而涌入采掘空间,这种现象叫做瓦斯涌出。瓦斯涌出根据涌出形式的不同可以分为普通涌出和特殊涌出。(二)矿井瓦斯涌出来源掌握矿井瓦斯涌出的来源,是实行瓦斯分源治理的前提条件。按照瓦斯涌出地点和分布状况,瓦斯涌出来源可分为:1、煤、岩壁瓦斯涌出;2、采落煤炭瓦斯涌出;3、采空区的瓦斯涌出;4、邻近煤层瓦斯涌出。三、矿井瓦斯涌出1、矿井瓦斯涌出量的概念与计算矿井瓦斯涌出量是指在开采过程中,单位时间内或单位重量煤中放出的瓦斯量。表示矿井瓦斯涌出量的方法有两种。1)绝对瓦斯涌出量绝对瓦斯涌出量是指单位时间内涌人采掘空间的瓦斯数量,用m3/min或m3/d表示。可用下式进行计算QCH4=QC(1—1)或Q′=1440QC(1—2)(三)矿井瓦斯涌出量式中QCH4——矿井(或采区)绝对瓦斯涌出量,m3/min;Q′CH4——矿井(或采区)绝对瓦斯涌出量,m3/d;Q——矿井(或采区)总回风量,m3/min;C——矿井(或采区)总回风流中的瓦斯浓度,%;1440——1昼夜的分钟数。2)相对瓦斯涌出量相对瓦斯涌出量是指在矿井正常生产条件下,月平均日产1t煤所涌出的瓦斯数量,用m3/t表示。可用下式进行计算:ANQCHCHq441440式中qCH4——矿井(或采区)相对瓦斯涌出量,m3/t;QCH4——矿井(或采区)绝对瓦斯涌出量,m3/min;A——矿井(或采区)月产煤量,t;N——矿井(或采区)的月工作天数。必须指出,对于抽放瓦斯的矿井,在计算矿井瓦斯涌出量时应包括抽放的瓦斯量。(四)影响矿井瓦斯涌出量的因素矿井瓦斯涌出量并不是固定不变的,它随自然条件和开采技术条件的变化而变化。1、煤层瓦斯含量它是影响矿井瓦斯涌出量的决定因素。被开采煤层的原始瓦斯含量越高,其涌出量就越大。如果开采煤层附近有瓦斯含量大的围岩或煤层(通常称为邻近层),由于采动影响,邻近层中的瓦斯就会沿采动裂隙涌入开采空间,导致实际瓦斯涌出量大于开采煤层的瓦斯含量。2、大气压力的变化正常情况时,采空区及裂隙中的瓦斯与巷道风流处于相对平衡状态。当大气压力突然降低时,就会破坏原来的平衡状态,瓦斯涌出的数量就会增大;反之,瓦斯涌出量变小。因此,当地面大气压突然下降时,必须百倍警惕,加强对采空区和密闭等附近的瓦斯检查;否则,可能造成重大事故。3、开采规模开采规模是指矿井的开采深度、开拓开采的范围以及矿井产量。开采深度越大,煤层瓦斯含量越高,瓦斯涌出量就越大;开拓与开采范围越大,瓦斯涌出的暴露面积越大,其涌出量就越大;在其他条件相同时,产量高的矿井其瓦斯涌出量一般较大。4、开采程序厚煤层分层开采时,第一分层(上分层)的瓦斯涌出量最大,这是由于采动影响,其他分层中的瓦斯也会沿裂隙渗出的缘故。显然,对顶底部邻近层都已采过的煤层,其开采过程中的瓦斯涌出量会显著地减少。5、采煤方法与顶板管理机械化采煤,煤的破碎较严重,瓦斯涌出量高;水力采煤,水包围着采落的煤体,对其中的瓦斯的排出起阻碍作用,导致湿煤中残余瓦斯含量增大,其瓦斯涌出量较少。采用全部陷落法管理顶板,由于能够造成顶底板更大范围的松动,以及采空区存留大量散煤等原因,其瓦斯涌出量比采用充填法管理顶板时要高。另外,回采率低的采煤方法,瓦斯涌出量相对就高。6、生产工序同一采面,放炮或割煤时的瓦斯涌出量最高,较该面平均涌出量可高出一倍或几倍。7、通风压力采用负压通风(抽出式)的矿井,风压越高瓦斯涌出量越大,而采用正压通风(压人式)的矿井,风压越高瓦斯涌出量越小。这主要是风压与瓦斯涌出压力相互作用的结果。8、采空区管理一般说来,多数采空区都积存有大量瓦斯,其管理方法及好坏程度对瓦斯涌出影响很大。例如,该封闭而未封闭或密闭质量很差,就会造成采空区瓦斯向外涌出。对采空区进行合理抽放会降低矿井的实际