2021高考数学一轮复习 第八章 立体几何与空间向量 8.2 空间点、直线、平面之间的位置关系课件

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

§8.2空间点、直线、平面之间的位置关系1.理解空间直线、平面位置关系的定义.2.了解可以作为推理依据的公理和定理.3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.最新考纲主要考查与点、线、面位置关系有关的命题真假判断和求解异面直线所成的角,题型主要以选择题和填空题的形式出现,解题要求有较强的直观想象和逻辑推理等核心素养,主要为中低档题.考情考向分析INDEX回扣基础知识训练基础题目基础落实1.四个公理公理1:如果一条直线上的在一个平面内,那么这条直线在此平面内.公理2:过的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们过该点的公共直线.公理4:平行于同一条直线的两条直线互相.知识梳理两点不在一条直线上有且只有一条平行直线直线异面直线:不同在一个平面内,没有公共点2.直线与直线的位置关系(1)位置关系的分类任何平行相交共面直线(2)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的叫做异面直线a与b所成的角(或夹角).②范围:.锐角(或直角)0,π23.直线与平面的位置关系有、、________________三种情况.4.平面与平面的位置关系有、两种情况.5.等角定理空间中如果两个角的,那么这两个角相等或互补.直线在平面内直线与平面相交直线与平面平行平行相交两边分别对应平行1.分别在两个不同平面内的两条直线为异面直线吗?概念方法微思考提示不一定.因为异面直线不同在任何一个平面内.分别在两个不同平面内的两条直线可能平行或相交.2.空间中如果两个角的两边分别对应平行,那么这两个角一定相等吗?提示不一定.如果这两个角开口方向一致,则它们相等,若反向则互补.1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.()(2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.()(3)没有公共点的两条直线是异面直线.()(4)若a,b是两条直线,α,β是两个平面,且a⊂α,b⊂β,则a,b是异面直线.()基础自测题组一思考辨析√×××2.如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成角的大小为A.30°B.45°C.60°D.90°题组二教材改编解析连接B1D1,D1C(图略),则B1D1∥EF,故∠D1B1C即为所求的角.又B1D1=B1C=D1C,∴△B1D1C为等边三角形,∴∠D1B1C=60°.√3.如图,在三棱锥A—BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则(1)当AC,BD满足条件________时,四边形EFGH为菱形;AC=BD解析∵四边形EFGH为菱形,∴EF=EH,∴AC=BD.(2)当AC,BD满足条件__________________时,四边形EFGH为正方形.AC=BD且AC⊥BD解析∵四边形EFGH为正方形,∴EF=EH且EF⊥EH,∵EF∥AC,EH∥BD,且EF=12AC,EH=12BD,∴AC=BD且AC⊥BD.4.(2019·上海市金山中学月考)设直线l与平面α平行,直线m在平面α上,那么A.直线l不平行于直线mB.直线l与直线m异面C.直线l与直线m没有公共点D.直线l与直线m不垂直题组三易错自纠解析∵直线l与平面α平行,由线面平行的定义可知:直线l与平面α无公共点,又直线m在平面α上,∴直线l与直线m没有公共点,故选C.√解析依题意,直线b和c的位置关系可能是相交、平行或异面.5.已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面√6.如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH在原正方体中互为异面的对数为______.3解析平面图形的翻折应注意翻折前后相对位置的变化,则AB,CD,EF和GH在原正方体中,显然AB与CD,EF与GH,AB与GH都是异面直线,而AB与EF相交,CD与GH相交,CD与EF平行.故互为异面直线的有且只有3对.典题深度剖析重点多维探究题型突破平面基本性质的应用题型一师生共研例1如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;证明如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥BA1.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)CE,D1F,DA三线共点.证明∵EF∥CD1,EFCD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE,D1F,DA三线共点.共面、共线、共点问题的证明(1)证明共面的方法:①先确定一个平面,然后再证其余的线(或点)在这个平面内.②证两平面重合.(2)证明共线的方法:①先由两点确定一条直线,再证其他各点都在这条直线上.②直接证明这些点都在同一条特定直线上.(3)证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.思维升华SIWEISHENGHUA证明∵E,F分别为AB,AD的中点,∴EF∥BD.跟踪训练1如图,在空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别在BC,CD上,且BG∶GC=DH∶HC=1∶2.(1)求证:E,F,G,H四点共面;∵在△BCD中,BGGC=DHHC=12,∴GH∥BD,∴EF∥GH.∴E,F,G,H四点共面.(2)设EG与FH交于点P,求证:P,A,C三点共线.证明∵EG∩FH=P,P∈EG,EG⊂平面ABC,∴P∈平面ABC.同理P∈平面ADC.∴P为平面ABC与平面ADC的公共点.又平面ABC∩平面ADC=AC,∴P∈AC,∴P,A,C三点共线.判断空间两直线的位置关系题型二师生共研例2(1)α是一个平面,m,n是两条直线,A是一个点,若m⊄α,n⊂α,且A∈m,A∈α,则m,n的位置关系不可能是A.垂直B.相交C.异面D.平行解析依题意,m∩α=A,n⊂α,∴m与n可能异面、相交(垂直是相交的特例),一定不平行.√(2)如图,在正方体ABCD-A1B1C1D1中,点E,F分别在A1D,AC上,且A1E=2ED,CF=2FA,则EF与BD1的位置关系是A.相交但不垂直B.相交且垂直C.异面D.平行√解析连接D1E并延长,与AD交于点M,由A1E=2ED,可得M为AD的中点,连接BF并延长,交AD于点N,因为CF=2FA,可得N为AD的中点,所以M,N重合,所以EF和BD1共面,且MEED1=12,MFBF=12,所以EF∥BD1.所以MEED1=MFBF,空间中两直线位置关系的判定,主要是异面、平行和垂直的判定.异面直线的判定可采用直接法或反证法;平行直线的判定可利用三角形(梯形)中位线的性质、公理4及线面平行与面面平行的性质定理;垂直关系的判定往往利用线面垂直或面面垂直的性质来解决.思维升华SIWEISHENGHUA跟踪训练2(1)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交√解析由直线l1和l2是异面直线可知l1与l2不平行,故l1,l2中至少有一条与l相交.故选D.(2)如图所示,正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论为________.(注:把你认为正确的结论序号都填上)③④解析因为点A在平面CDD1C1外,点M在平面CDD1C1内,直线CC1在平面CDD1C1内,CC1不过点M,所以AM与CC1是异面直线,故①错;取DD1中点E,连接AE(图略),则BN∥AE,但AE与AM相交,故②错;因为B1与BN都在平面BCC1B1内,M在平面BCC1B1外,BN不过点B1,所以BN与MB1是异面直线,故③正确;同理④正确,故填③④.求两条异面直线所成的角题型三师生共研例3(2020·青岛模拟)如图,在底面为正方形,侧棱垂直于底面的四棱柱ABCD—A1B1C1D1中,AA1=2AB=2,则异面直线A1B与AD1所成角的余弦值为A.15B.25C.35D.45√解析连接BC1,易证BC1∥AD1,则∠A1BC1即为异面直线A1B与AD1所成的角.连接A1C1,由AB=1,AA1=2,易得A1C1=2,A1B=BC1=5,故cos∠A1BC1=A1B2+BC21-A1C212×A1B×BC1=45,即异面直线A1B与AD1所成角的余弦值为45.引申探究将本例条件“AA1=2AB=2”改为“AB=1,若异面直线A1B与AD1所成角的余弦值为910”,试求AA1AB的值.解设AA1AB=t(t0),则AA1=tAB.∵AB=1,∴AA1=t.∵A1C1=2,A1B=t2+1=BC1,∴cos∠A1BC1=A1B2+BC21-A1C212×A1B×BC1=t2+1+t2+1-22×t2+1×t2+1=910.∴t=3,即AA1AB=3.用平移法求异面直线所成的角的三个步骤(1)一作:根据定义作平行线,作出异面直线所成的角.(2)二证:证明作出的角是异面直线所成的角.(3)三求:解三角形,求出所作的角.思维升华SIWEISHENGHUA跟踪训练3(2017·全国Ⅱ)已知直三棱柱ABC-A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为A.32B.155C.105D.33√解析方法一将直三棱柱ABC-A1B1C1补形为直四棱柱ABCD-A1B1C1D1,如图①所示,连接AD1,B1D1,BD.由题意知∠ABC=120°,AB=2,BC=CC1=1,图①所以AD1=BC1=2,AB1=5,∠DAB=60°.在△ABD中,由余弦定理知BD2=AB2+AD2-2×AB×AD×cos∠DAB=22+12-2×2×1×cos60°=3,所以BD=3,所以B1D1=3.又AB1与AD1所成的角即为AB1与BC1所成的角θ,所以cosθ=AB21+AD21-B1D212×AB1×AD1=5+2-32×5×2=105.故选C.方法二以B1为坐标原点,B1C1所在的直线为x轴,垂直于B1C1的直线为y轴,BB1所在的直线为z轴建立空间直角坐标系,如图②所示.由已知条件知B1(0,0,0),B(0,0,1),C1(1,0,0),A(-1,3,1),图②则BC1→=(1,0,-1),AB1→=(1,-3,-1).所以cos〈AB1→,BC1→〉=AB1→·BC1→|AB1→||BC1→|=25×2=105.所以异面直线AB1与BC1所成角的余弦值为105.故选C.课时精练基础保分练1.四条线段顺次首尾相连,它们最多可确定的平面个数为A.4B.3C.2D.1√12345678910111213141516解析首尾相连的四条线段每相邻两条确定一个平面,所以最多可以确定四个平面.123456789101112131415162.a,b,c是两两不同的三条直线,下面四个命题中,真命题是A.若直线a,b异面,b,c异面,则a,c异面B.若直线a,b相交,b,c相交,则a,c相交C.若a∥b,则a,b与c所成的角相等D.若a⊥b,b⊥c,则a∥c√解析若直线a,b异面,b,c异面,则a,c相交、平行或异面;若a,b相交,b,c相交,则a,c相交、平行或异面;若a⊥b,b⊥c,则a,c相交、平行

1 / 67
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功