3.2.1古典概型1.了解基本事件的特点,能写出一次试验所出现的基本事件.(易错易混点)2.理解古典概型及其概率计算公式,会判断古典概型.(难点)3.会用列举法求古典概型的概率.(重点)[基础·初探]教材整理1基本事件的特点阅读教材,完成下列问题.1.任何两个基本事件是_______.2.任何事件(除不可能事件)都可以表示成_____________.互斥的基本事件的和随手练某校高一年级要组建数学、计算机、航空模型三个兴趣小组,某学生只选报其中的2个,则基本事件共有()A.1个B.2个C.3个D.4个【解析】基本事件有(数学,计算机),(数学,航空模型),(计算机,航空模型)共3个.【答案】C教材整理2古典概型阅读教材,完成下列问题.1.古典概型的特点如果某类概率模型具有以下两个特点:(1)试验中所有可能出现的基本事件___________;(2)每个基本事件出现的___________.我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型.2.古典概型的概率公式对于任何事件A,P(A)=______________________.只有有限个可能性相等A包含的基本事件的个数基本事件的总数随手练1.判断(正确的打“√”,错误的打“×”)(1)若一次试验的结果所包含的基本事件的个数为有限个,则该试验符合古典概型.()(2)“抛掷两枚硬币,至少一枚正面向上”是基本事件.()(3)从装有三个大球、一个小球的袋中,取出一球的试验是古典概型.()(4)一个古典概型的基本事件数为n,则每一个基本事件出现的概率都是1n.()【答案】(1)×(2)×(3)×(4)√2.甲、乙、丙三名同学站成一排,甲站在中间的概率是()A.16B.12C.13D.23【解析】基本事件有:甲乙丙、甲丙乙、乙甲丙、乙丙甲、丙甲乙、丙乙甲共六个,甲站在中间的事件包括乙甲丙、丙甲乙共2个,所以甲站在中间的概率:P=26=13.【答案】C3.若书架上放的数学、物理、化学书分别是5本,3本,2本,则随机抽出一本是物理书的概率为________.【解析】从中随机抽出一本书共有10种取法,抽到物理书有3种情况,故抽到物理书的概率为310.【答案】310[小组合作型]类型1基本事件和古典概型的判断例1(1)抛掷一枚骰子,下列不是基本事件的是()A.向上的点数是奇数B.向上的点数是3C.向上的点数是4D.向上的点数是6(2)下列是古典概型的是()A.任意抛掷两枚骰子,所得点数之和作为基本事件B.求任意的一个正整数平方的个位数字是1的概率,将取出的正整数作为基本事件C.从甲地到乙地共n条路线,求某人正好选中最短路线的概率D.抛掷一枚均匀硬币首次出现正面为止【精彩点拨】结合基本事件及古典概型的定义进行判断,基本事件是最小的随机事件,而古典概型要两个特征——有限性和等可能性.【解析】(1)向上的点数是奇数包含三个基本事件:向上的点数是1,向上的点数是3,向上的点数是5,则A项不是基本事件,B,C,D项均是基本事件.故选A.(2)A项中由于点数的和出现的可能性不相等,故A不是;B项中的基本事件是无限的,故B不是;C项满足古典概型的有限性和等可能性,故C是;D项中基本事件既不是有限个也不具有等可能性,故D不是.【答案】(1)A(2)C1.基本事件具有以下特点:①不可能再分为更小的随机事件;②两个基本事件不可能同时发生.2.判断随机试验是否为古典概型,关键是抓住古典概型的两个特征——有限性和等可能性,二者缺一不可.[再练一题]1.下列试验是古典概型的为________.①从6名同学中选出4人参加数学竞赛,每人被选中的可能性大小;②同时掷两颗骰子,点数和为6的概率;③近三天中有一天降雨的概率;④10人站成一排,其中甲、乙相邻的概率.【解析】①②④是古典概型,因为符合古典概型的定义和特点.③不是古典概型,因为不符合等可能性,降雨受多方面因素影响.【答案】①②④类型2基本事件的计数问题例2有两个正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两个正四面体玩具的试验:用(x,y)表示结果,其中x表示第1个正四面体玩具朝下的点数,y表示第2个正四面体玩具朝下的点数.试写出:(1)试验的基本事件;(2)事件“朝下点数之和大于3”;(3)事件“朝下点数相等”;(4)事件“朝下点数之差的绝对值小于2”.【精彩点拨】根据事件的定义,按照一定的规则找到试验中所有可能发生的结果,列举出来即可.解(1)这个试验的基本事件为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).(2)事件“朝下点数之和大于3”包含以下13个基本事件:(1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).(3)事件“朝下点数相等”包含以下4个基本事件:(1,1),(2,2),(3,3),(4,4).(4)事件“朝下点数之差的绝对值小于2”包含以下10个基本事件:(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4).1.在求基本事件时,一定要按规律去写,这样不容易漏写.2.确定基本事件是否与顺序有关.3.写基本事件时,主要用列举法,具体写时可用列表法或树状图法.[再练一题]2.连续掷3枚硬币,观察这3枚硬币落在地面上时是正面朝上还是反面朝上.(1)写出这个试验的所有基本事件;(2)求这个试验的基本事件的总数;(3)“恰有两枚硬币正面朝上”这一事件包含哪些基本事件?解(1)这个试验包含的基本事件有:(正,正,正),(正,正,反),(正,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反,正),(反,反,反).(2)这个试验包含的基本事件的总数是8.(3)“恰有两枚硬币正面朝上”这一事件包含以下3个基本事件:(正,正,反),(正,反,正),(反,正,正).类型3简单的古典概型的概率计算例3袋子中装有除颜色外其他均相同的编号为a,b的2个黑球和编号为c,d,e的3个红球,从中任意摸出2个球.(1)写出所有不同的结果;(2)求恰好摸出1个黑球和1个红球的概率;(3)求至少摸出1个黑球的概率.【精彩点拨】(1)可以利用初中学过的树状图写出;(2)找出恰好摸出1个黑球和1个红球的基本事件,利用古典概型的概率计算公式求出;(3)找出至少摸出1个黑球的基本事件,利用古典概型的概率计算公式求出.解(1)用树状图表示所有的结果为:所以所有不同的结果是ab,ac,ad,ae,bc,bd,be,cd,ce,de.(2)记“恰好摸出1个黑球和1个红球”为事件A,则事件A包含的基本事件为ac,ad,ae,bc,bd,be,共6个基本事件,所以P(A)=610=0.6,即恰好摸出1个黑球和1个红球的概率为0.6.(3)记“至少摸出1个黑球”为事件B,则事件B包含的基本事件为ab,ac,ad,ae,bc,bd,be,共7个基本事件,所以P(B)=710=0.7,即至少摸出1个黑球的概率为0.7.1.求古典概型概率的计算步骤(1)确定基本事件的总数n;(2)确定事件A包含的基本事件的个数m;(3)计算事件A的概率P(A)=mn.2.解决古典概型问题的基本方法是列举法,但对于较复杂的古典概型问题,可采用转化的方法:一是将所求事件转化为彼此互斥事件的和;二是先求对立事件的概率,再求所求事件的概率.[再练一题]3.袋中有红、白色球各一个,每次任取一个,有放回地摸三次,求基本事件的个数,写出所有基本事件的全集,并计算下列事件的概率:(1)三次颜色恰有两次同色;(2)三次颜色全相同;(3)三次摸到的红球多于白球.解每个基本事件为(x,y,z),其中x,y,z分别取红、白球,故基本事件个数n=8个.全集I={(红,红,红),(红,红,白),(红,白,红),(白,红,红),(红,白,白),(白,红,白),(白,白,红),(白,白,白)}.(1)记事件A为“三次颜色恰有两次同色”.∵A中含有基本事件个数为m=6,∴P(A)=mn=68=0.75.(2)记事件B为“三次颜色全相同”.∵B中含基本事件个数为m=2,∴P(B)=mn=28=0.25.(3)记事件C为“三次摸到的红球多于白球”.∵C中含有基本事件个数为m=4,∴P(C)=48=0.5.[探究共研型]探究点1基本事件的特征探究1为什么说基本事件是彼此互斥的?【提示】基本事件是试验的最基本结果,这些基本结果不能用其他结果加以描述.在一次试验中,只可能出现一种结果,即产生一个基本事件,如掷骰子试验中,一次试验只会出现一个点数,任何两个点数不可能在一次试验中同时发生,即基本事件不可能同时发生,因而基本事件是彼此互斥的,但其他试验结果都可以用基本事件加以描述.探究2基本事件的表示方法有哪些?【提示】写出所有的基本事件可采用的方法较多,例如列表法、坐标系法、树状图法,但不论采用哪种方法,都要按一定的顺序进行,做到不重不漏.探究点2古典概型的特征探究3古典概型有何特点?何为非古典概型?【提示】一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特点:有限性和等可能性,并不是所有的试验都是古典概型.下列三类试验都不是古典概型:(1)基本事件个数有限,但非等可能;(2)基本事件个数无限,但等可能;(3)基本事件个数无限,也不等可能.探究4举例说明古典概型的概率与模型选择无关?【提示】以“甲、乙、丙三位同学站成一排,计算甲站在中间的概率”为例,若从三个同学的站位顺序来看,则共有“甲乙丙”、“甲丙乙”、“乙甲丙”、“乙丙甲”、“丙甲乙”、“丙乙甲”六种结果,其中“甲站在中间”包含“乙甲丙”、“丙甲乙”两个基本事件,因此所求事件的概率为P=26=13;若仅从甲的站位来看,则只有“甲站1号位”、“甲站2号位”、“甲站3号位”三种结果,其中“甲站在中间”只有“甲站2号位”这一种情况,因此所求概率为P=13.例4先后抛掷两枚大小相同的骰子.(1)求点数之和出现7点的概率;(2)求出现两个4点的概率;(3)求点数之和能被3整除的概率.【精彩点拨】明确先后掷两枚骰子的基本事件总数,然后用古典概型概率计算公式求解,可借图来确定基本事件情况.解如图所示,从图中容易看出基本事件与所描点一一对应,共36种.(1)记“点数之和出现7点”为事件A,从图中可以看出,事件A包含的基本事件共6个:(6,1),(5,2),(4,3),(3,4),(2,5),(1,6).故P(A)=636=16.(2)记“出现两个4点”为事件B,从图中可以看出,事件B包含的基本事件只有1个,即(4,4).故P(B)=136.(3)记“点数之和能被3整除”为事件C,则事件C包含的基本事件共12个:(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(4,5),(5,4),(6,6).故P(C)=1236=13.1.在求概率时,若事件可以表示成有序数对的形式,则可以把全体基本事件用平面直角坐标系中的点表示,以便我们准确地找出某事件所包含的基本事件个数.2.数形结合能使解决问题的过程变得形象、直观,给问题的解决带来方便.[再练一题]4.抛掷两颗骰子,求:(1)点数之和是4的倍数的概率;(2)点数之和大于5小于10的概率.解如图,基本事件共有36种.(1)记“点数之和是4的倍数”的事件为A,从图中可以看出,事件A包含的基本事件共有9个:(1,3),(2,2),(2,6),(3,1),(3,5),(4,4),(5,3),(6,2),(6,6),所以P(A)=14.(2)记“点数之和大于5小于10”的事件为B,从图中可以看出,事件B包含的基本事件共有20个.即(1,5),(2,4),(3,3),(4,2),(5,1),(1,6),(2,5),(3,4),(4,3),(5,2),(6,1),