高考专题突破四高考中的立体几何问题第八章立体几何与空间向量NEIRONGSUOYIN内容索引题型分类深度剖析课时作业题型分类深度剖析1PARTONE题型一平行、垂直关系的证明例1如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.师生共研(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E-ABC的体积.(1)平行问题的转化思维升华利用线线平行、线面平行、面面平行的相互转化解决平行关系的判定问题时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而应用性质定理时,其顺序正好相反.在实际的解题过程中,判定定理和性质定理一般要相互结合,灵活运用.(2)垂直问题的转化在空间垂直关系中,线面垂直是核心,已知线面垂直,既可为证明线线垂直提供依据,又可为利用判定定理证明面面垂直作好铺垫.应用面面垂直的性质定理时,一般需作辅助线,基本作法是过其中一个平面内一点作交线的垂线,从而把面面垂直问题转化为线面垂直问题,进而可转化为线线垂直问题.跟踪训练1如图,在底面是矩形的四棱锥P—ABCD中,PA⊥底面ABCD,点E,F分别是PC,PD的中点,PA=AB=1,BC=2.(1)求证:EF∥平面PAB;(2)求证:平面PAD⊥平面PDC.题型二立体几何中的计算问题多维探究命题点1求线面角例2(2018·浙江)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角的正弦值.(1)利用向量求直线与平面所成的角有两个思路:①分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);②通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.思维升华(2)若直线l与平面α的夹角为θ,直线l的方向向量l与平面α的法向量n的夹角为β,则θ=π2-β或θ=β-π2,故有sinθ=|cosβ|=|l·n||l||n|.跟踪训练2在直三棱柱ABC-A1B1C1中,△ABC为正三角形,点D在棱BC上,且CD=3BD,点E,F分别为棱AB,BB1的中点.(1)证明:A1C∥平面DEF;(2)若A1C⊥EF,求直线A1C1与平面DEF所成的角的正弦值.命题点2求二面角例3(2018·呼和浩特联考)如图,在四棱锥A-BCDE中,平面BCDE⊥平面ABC,BE⊥EC,BC=2,AB=4,∠ABC=60°.(1)求证:BE⊥平面ACE;(2)若直线CE与平面ABC所成的角为45°,求二面角E-AB-C的余弦值.(1)求二面角最常用的方法就是分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.(2)利用向量法求二面角的大小的关键是确定平面的法向量,求法向量的方法主要有两种:①求平面的垂线的方向向量;②利用法向量与平面内两个不共线向量的数量积为零,列方程组求解.思维升华跟踪训练3如图,四棱柱ABCD-A1B1C1D1的底面ABCD是菱形,AC∩BD=O,A1O⊥底面ABCD,AB=2,AA1=3.(1)证明:平面A1CO⊥平面BB1D1D;(2)若∠BAD=60°,求二面角B-OB1-C的余弦值.题型三立体几何中的探索性问题师生共研例4如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=22,BC=42,PA=2.(1)求证:AB⊥PC;(2)在线段PD上,是否存在一点M,使得二面角M-AC-D的大小为45°,如果存在,求BM与平面MAC所成角的正弦值,如果不存在,请说明理由.(1)对于线面关系中的存在性问题,首先假设存在,然后在该假设条件下,利用线面关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论则否定假设.(2)平面图形的翻折问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况.一般地,翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.思维升华跟踪训练4如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,AB=AC=2,AD=22,PB=2,PB⊥AC.(1)求证:平面PAB⊥平面PAC;(2)若∠PBA=45°,试判断棱PA上是否存在与点P,A不重合的点E,使得直线CE与平面PBC所成角的正弦值为69?若存在,求出AEAP的值;若不存在,请说明理由.课时作业2PARTTWO1.在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,PA=PD.基础保分练123456(1)证明:BC⊥PB;123456(2)若PA⊥PD,PB=AB,求二面角A-PB-C的余弦值.2.(2019·大连模拟)如图,在三棱柱ABC-A1B1C1中,△ABC和△AA1C均是边长为2的等边三角形,点O为AC中点,平面AA1C1C⊥平面ABC.123456(1)证明:A1O⊥平面ABC;123456(2)求直线AB与平面A1BC1所成角的正弦值.123456(1)求证:平面PAC⊥平面ABC;3.(2019·抚顺诊断)如图1,在边长为5的菱形ABCD中,AC=6,现沿对角线AC把△ADC翻折到△APC的位置得到四面体P-ABC,如图2所示.已知PB=42.(2)若Q是线段AP上的点,且AQ→=13AP→,求二面角Q-BC-A的余弦值.1234561234564.(2019·包头模拟)如图,多面体ABCDEF中,ABCD为正方形,AB=2,AE=3,DE=5,二面角E-AD-C的余弦值为55,且EF∥BD.(1)证明:平面ABCD⊥平面EDC;123456(2)求平面AEF与平面EDC所成锐二面角的余弦值.(1)求证:A1D⊥平面BCED;1234565.等边三角形ABC的边长为3,点D,E分别是边AB,AC上的点,且满足ADDB=CEEA=12,如图1.将△ADE沿DE折起到△A1DE的位置,使二面角A1—DE—B为直二面角,连接A1B,A1C,如图2.技能提升练123456(2)在线段BC上是否存在点P,使直线PA1与平面A1BD所成的角为60°?若存在,求出PB的长;若不存在,请说明理由.(1)求证:平面BED⊥平面ABCD;123456拓展冲刺练6.如图,在四棱锥E-ABCD中,底面ABCD是圆内接四边形,CB=CD=CE=1,AB=AD=AE=3,EC⊥BD.123456(2)若点P在侧面ABE内运动,且DP∥平面BEC,求直线DP与平面ABE所成角的正弦值的最大值.