第27课时图形的相似基础自主导学考点一比例线段1.比例线段的定义在四条线段a,b,c,d中,如果其中两条线段的比等于另外两条线段的比,即𝑎𝑏=𝑐𝑑(或a∶b=c∶d),那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.2.比例线段的性质(1)基本性质:𝑎𝑏=𝑐𝑑⇔ad=bc;(2)合比性质:𝑎𝑏=𝑐𝑑⇔𝑎+𝑏𝑏=𝑐+𝑑𝑑;(3)等比性质:若𝑎𝑏=𝑐𝑑=…=𝑚𝑛(b+d+…+n≠0),则𝑎+𝑐+…+𝑚𝑏+𝑑+…+𝑛=𝑎𝑏.3.黄金分割把线段AB分成两条线段AC和BC(ACBC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割,C叫做线段AB的黄金分割点.𝐴𝐶=5-12𝐴𝐵≈0.618AB,BC=3-52𝐴𝐵考点梳理自主测试基础自主导学考点梳理自主测试考点二平行线分线段成比例定理及推论1.三条平行线截两条直线,所得的对应线段成比例.2.平行于三角形一边的直线与其他两边(或两边的延长线)相交,截得的对应线段成比例.考点三相似多边形1.定义各角分别相等,各边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比,相似比为1的两个多边形全等.2.性质(1)相似多边形的对应角相等,对应边的比相等;(2)相似多边形周长的比等于相似比;(3)相似多边形面积的比等于相似比的平方.基础自主导学考点梳理自主测试考点四相似三角形1.定义三角分别相等,三边成比例的两个三角形叫做相似三角形.2.判定(1)平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似;(2)两角对应相等,两三角形相似;(3)两边对应成比例且夹角相等,两三角形相似;(4)三边对应成比例,两三角形相似;(5)斜边和一条直角边对应成比例,两直角三角形相似.基础自主导学考点梳理自主测试3.性质(1)相似三角形的对应角相等,对应边的比相等;(2)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比;(3)相似三角形周长的比等于相似比;(4)相似三角形面积的比等于相似比的平方.基础自主导学考点梳理自主测试4.相似三角形的应用相似三角形的知识在实际生产和生活中有着广泛的应用.这一应用是建立在数学建模思想和数形结合思想的基础上,把实际问题转化为数学问题,通过求解数学问题达到解决实际问题的目的.(1)相似三角形的应用主要有如下两个方面:①利用相似三角形的性质测量不能直接到达的河的宽度;②利用相似三角形的性质计算不能直接测量的物体的高度.(2)解相似三角形实际问题的一般步骤:①审题;②构建图形;③利用相似解决问题.基础自主导学考点梳理自主测试方法指导:1.与三角形有关的实际应用题解题步骤:(1)审题:通读题干(结合图形),第一时间锁定采用的知识点,如:通过题图观察是否含有已知角度数,如果含有,考虑利用锐角三角函数解题;如果仅涉及三角形的边长,则采用相似三角形的性质解题.(2)筛选信息:由于实际问题文字阅读量较大,因此筛选有效信息尤为关键.例如题干中的关键词:视角→与相似三角形有关的等量角;距离→与三角形有关的边长等,都是获取与要求三角形有关的几何量.(3)构造图形:只要是与三角形有关的实际问题都会涉及图形的构造,若题干中给出了相应的图形,则可直接利用所给图形进行计算,必要时还需添加辅助线;若未给出图形,则需要通过(2)中获取的信息构造几何图形进行解题.基础自主导学考点梳理自主测试(4)列关系式:当出现相似三角形的实际应用题时,通常采用的方法是列出比例式构造方程求解;若出现锐角三角函数的实际应用题时,则利用直角三角形中锐角三角函数的表达式求解即可.(5)检验:解题完毕后,可能会存在一些较为特殊的数据,例如含有复杂的小数等.因此,要特别注意所求数据是否符合实际意义,同时还要注意题干中有无要求保留整数的条件.基础自主导学考点梳理自主测试2.在实际测量高度、宽度、距离等问题中,常结合视角知识构造直角三角形,利用三角函数来解决问题,常见的构造的基本图形有如下几种:(1)构造一个直角三角形:基础自主导学考点梳理自主测试(2)构造两个直角三角形:①不同地点测量②同一地点测量基础自主导学考点梳理自主测试考点五位似变换与位似图形1.定义取定一点O,把图形上任意一点P对应到射线OP(或它的反向延长线)上一点P',使得线段OP'与OP的比等于常数k(k0),点O对应到它自身,这种变换叫做位似变换,点O叫做位似中心,常数k叫做位似比,一个图形经过位似变换得到的图形叫做与原图形位似的图形.注意:位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.2.性质两个位似的图形上每一对对应点都与位似中心在一条直线上,并且新图形与原图形上对应点到位似中心的距离之比等于位似比.基础自主导学考点梳理自主测试3.画位似图形的步骤(1)确定位似中心;(2)连接图形各顶点与位似中心的线段(或延长线);(3)按位似比进行取点;(4)顺次连接各点,所得的图形就是所求图形.基础自主导学考点梳理自主测试1.若𝑎-𝑏𝑏=23,则𝑎𝑏=()A.13B.23C.43D.53答案:D2.如图,若两个四边形相似,则∠α的度数是()A.87°B.60°C.75°D.120°答案:A基础自主导学考点梳理自主测试3.下列各组中的四条线段成比例的是()A.a=1,b=3,c=2,d=4B.a=4,b=6,c=5,d=10C.a=2,b=4,c=3,d=6D.a=2,b=3,c=4,d=1答案:C4.如图,已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点,若△ABC与△A1B1C1是位似图形,且顶点都在格点上,则位似中心的坐标是.答案:(9,0)规律方法探究命题点1命题点2命题点3命题点4命题点1相似图形的性质【例1】如图,在长为8cm、宽为4cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是()A.2cm2B.4cm2C.8cm2D.16cm2解析:根据相似多边形面积的比等于相似比的平方,得𝑆阴影𝑆原矩形=482,即𝑆阴影4×8=14,S阴影=8cm2.答案:C规律方法探究命题点1命题点2命题点3命题点4规律方法探究命题点1命题点2命题点3命题点4命题点2相似三角形的性质与判定【例2】如图,在△ABC和△ADE中,∠ABC=∠ADE,∠BAD=∠CAE.(1)写出图中两对相似三角形(不得添加字母和线);(2)请分别说明两对三角形相似的理由.解:(1)△ABC∽△ADE,△ABD∽△ACE.(2)①△ABC∽△ADE.理由:∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE.又∠ABC=∠ADE,∴△ABC∽△ADE.②△ABD∽△ACE.理由:∵△ABC∽△ADE,.又∠BAD=∠CAE,∴△ABD∽△ACE.∴𝐴𝐵𝐴𝐷=𝐴𝐶𝐴𝐸规律方法探究命题点1命题点2命题点3命题点4规律方法探究命题点1命题点2命题点3命题点4变式训练如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连接BD并延长与CE交于点E.(1)求证:△ABD∽△CED;(2)若AB=6,AD=2CD,求BE的长.(1)证明:∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,∠ACF=120°.∵CE是外角平分线,∴∠ACE=60°,∴∠BAC=∠ACE.又∠ADB=∠CDE,∴△ABD∽△CED.(2)解:作BM⊥AC于点M(如图),∵AC=AB=6,∴AM=CM=3,BM=AB·sin60°=33.∵AD=2CD,∴CD=2,AD=4,MD=1.在Rt△BDM中,BD=𝐵𝑀2+𝑀𝐷2=27.由(1)△ABD∽△CED得,𝐵𝐷𝐸𝐷=𝐴𝐷𝐶𝐷,即27𝐸𝐷=2,∴ED=7,∴BE=BD+ED=37.规律方法探究命题点1命题点2命题点3命题点4命题点3位似图形【例3】如图,△ABC与△A'B'C'是位似图形,点O是位似中心,若OA=2AA',S△ABC=8,则S△A'B'C'=.解析:位似图形一定是相似图形,并且对应点到位似中心的距离之比等于位似比.∵OA=2AA',∴𝑂𝐴𝑂𝐴'=23.∴△ABC与△A'B'C'的位似比是2∶3.∴𝑆△𝐴𝐵𝐶𝑆△𝐴'𝐵'𝐶'=232.∵S△ABC=8,∴S△A'B'C'=18.答案:18规律方法探究命题点1命题点2命题点3命题点4规律方法探究命题点1命题点2命题点3命题点4命题点4相似三角形的应用【例4】问题背景:在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中的一些物体进行了测量,下面是他们通过测量得到的一些信息:甲组:如图①,一根长为80cm的竹竿直立于平地,测得其影长为60cm.乙组:如图②,测得学校旗杆的影长为900cm.丙组:如图③,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.规律方法探究命题点1命题点2命题点3命题点4图①图②图③任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度.(2)如图③,设太阳光线NH与☉O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(提示:如图③,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)规律方法探究命题点1命题点2命题点3命题点4解:(1)由题意,得△ABC∽△DEF,∴𝐴𝐵𝐷𝐸=𝐴𝐶𝐷𝐹.∵AB=80cm,AC=60cm,DF=900cm,∴80𝐷𝐸=60900.∴DE=1200cm,即DE=12m.故学校旗杆的高度是12m.(2)连接OM(图略),设☉O的半径为rcm.与(1)类似得𝐴𝐵𝐺𝑁=𝐴𝐶𝐺𝐻,即80𝐺𝑁=60156.∴GN=208cm.在Rt△NGH中,根据勾股定理得NH2=1562+2082=2602,∴NH=260cm.∵NH切☉O于M,∴OM⊥NH.∴∠OMN=∠HGN=90°.又∠ONM=∠HNG,∴△OMN∽△HGN.∴𝑂𝑀𝐻𝐺=𝑂𝑁𝐻𝑁.又ON=OI+IN=OI+(GN-GI)=r+8,∴𝑟156=𝑟+8260,解得r=12.∴景灯灯罩的半径是12cm.规律方法探究命题点1命题点2命题点3命题点4