-1-1.1命题与量词目标导航1.了解命题的定义.2.理解全称量词与存在量词的意义.3.会判断全称命题与存在性命题的真假.知识梳理1.命题(1)定义:能够判断真假的语句叫做命题.(2)表示形式:一个命题,一般可用一个小写英文字母表示,如:p,q,r,….【做一做1】“同一平面内垂直于同一条直线的两条直线平行”,该语句是命题吗?解:该语句是命题.名师点拨(1)并不是任何语句都是命题,只有能够判断真假的语句才是命题.一般地,祈使句、感叹句、疑问句都不是命题.(2)有些命题尽管现在不能确定其真假,但随着时间的推移,总能判断其真假,这样的语句也是命题.知识拓展(1)真命题:如果由命题的条件通过推理一定可以得出命题的结论,那么这样的命题叫做真命题.(2)假命题:如果由命题的条件通过推理不一定能得出命题的结论,那么这样的命题叫做假命题.知识梳理2.全称量词与全称命题(1)全称量词:短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号“∀”表示.(2)全称命题:含有全称量词的命题,叫做全称命题.(3)全称命题的形式:一般地,设p(x)是某集合M的所有元素都具有的性质,那么全称命题就是形如“对M中的所有x,p(x)”的命题.用符号简记为∀x∈M,p(x).【做一做2】命题“对所有整数x,x2+10”是全称命题吗?若是,用符号表示出来.分析:因为该命题含有全称量词“所有”,故是全称命题.解:是,用符号表示为∀x∈Z,x2+10.名师点拨(1)与“所有”等价的说法有“一切”“每一个”“任一个”等.(2)全称命题有时省去全称量词,仍为全称命题.如,“菱形都是平行四边形”,省去了全称量词“所有”.知识梳理3.存在量词与存在性命题(1)存在量词:短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号“∃”表示.(2)存在性命题:含有存在量词的命题,叫做存在性命题.(3)存在性命题的形式:一般地,设q(x)是某集合M的有些元素x具有的某种性质,那么存在性命题就是形如“存在集合M中的元素x,q(x)”的命题,用符号简记为∃x∈M,q(x).【做一做3】判断命题“有一个整数x,x2+1=0”是不是存在性命题,若是,用符号表示.分析:因为该命题含有存在量词“有一个”,故该命题是存在性命题.解:是,用符号表示为∃x∈Z,x2+1=0.0重难聚焦1.判断某个语句是不是命题.剖析:首先,要看这个句子的句型.一般地,疑问句、祈使句、感叹句等都不是命题.其次,要看能不能判断其真假,也就是判断其是否成立.2.判断一个全称命题是真(假)命题的方法.剖析:要判断一个全称命题是真命题,必须对限定集合中的每一个元素x验证p(x)成立,一般用代数推理给出证明.要判断一个全称命题是假命题,只需举出一个反例(满足命题的条件,但不满足命题结论的例子).例如,命题p:∀x∈R,x2-4x≥0.当x=1时,x2-4x=-3,-30,故命题p为假命题.3.判断一个存在性命题是真(假)命题的方法.剖析:判断一个存在性命题是真命题只要在限定集合M中,找到一个x=x0使p(x0)成立即可,否则,这个存在性命题就是假命题.典例透析题型一题型二语句是不是命题的判定【例1】下列语句是不是命题?如果是,注明其真假:(1)函数f(x)=ax2+bx+c是二次函数吗?(2)偶数的平方仍是偶数;(3)若空间的两条直线垂直,则这两条直线相交;(4)两个向量的夹角可以等于π.分析:(1)该语句是疑问句,不能判断其真假,故不是命题;(2)因所有偶数的平方都是偶数,无一例外,故该语句是命题且为真命题;(3)根据立体几何知识知,垂直的两条直线不一定相交,故所给语句是命题且为假命题;(4)根据两个向量夹角的定义知,两个向量反向时夹角为π,故所给语句是命题且为真命题.解:(1)不是;(2)是,真命题;(3)是,假命题;(4)是,真命题.典例透析题型一题型二全称命题与存在性命题真假的判定【例2】指出下列命题是全称命题还是存在性命题,并判断其真假:(1)p:所有正方形都是矩形;(2)q:∀x∈R,x2-x+14≥0;(3)r:∃x∈Z,x2+2x≤0;(4)s:至少有一个正整数x,使x3+1=0.分析:利用全称命题和存在性命题的定义判定命题是全称命题还是存在性命题.(1)利用正方形的定义进行判定;(2)将不等式的左边配方后进行判定;(3)将x=-1代入不等式后进行判定;(4)解方程x3+1=0后,依据方程的解进行判定.典例透析1下列语句不是命题的是()A.两点之间线段最短B.互补的两个角相等C.不是对顶角的两个角不相等D.延长线段AB解析:选项D是祈使句,故选项D不是命题.答案:D2下列命题是存在性命题的是()A.偶函数的图象关于y轴对称B.正四棱柱都是平行六面体C.不相交的两条直线是平行线D.存在实数大于等于3解析:只有选项D中含有存在量词,故选项D是存在性命题.答案:D典例透析3下列命题是假命题的是()A.已知a,b为非零向量,若a·b=0,则a⊥bB.若|a|=|b|,则a=bC.若ac2bc2,则abD.76解析:|a|=|b|只是两个向量的大小相等,但方向不一定相同,故两个向量不一定相等.答案:B4下列命题是真命题的是()A.∃x∈R,x2+10B.∃x∈Z,3x+1是整数C.∀x∈R,|x|3D.∀x∈Q,x2∈Z解析:当x=1时,3x+1=4是整数,故选项B是真命题.答案:B典例透析5下列命题是全称命题的是.(填序号)①菱形的四条边相等;②所有有两个角是45°的三角形都是等腰直角三角形;③正数的平方根不等于0;④至少有一个正整数是偶数;⑤所有整数都是实数吗?解析:命题②含有全称量词,①③省略了全称量词,故①②③是全称命题;而④含有存在量词,故④是存在性命题;⑤是疑问句,不能判断其真假,不是命题.答案:①②③典例透析