2020年中考数学全真模拟试卷(安徽专用)(一)(解析版)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2020年中考数学全真模拟试卷(安徽)(一)(考试时间:120分钟;总分:150分)班级:___________姓名:___________座号:___________分数:___________一.选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A.B.C.D四个选项,其中只有一个是正确的.1.[2020安徽中考原创]|﹣2020|=()A.0B.﹣2020C.2020D.±2020【答案】C【解析】根据绝对值的定义进行填空即可.【解答】解:|﹣2020|=2020,故选:C.【点睛】本题考查了绝对值,掌握绝对值的定义是解题的关键.2.[2019安庆市一模]下列运算正确的是()A.a2•a3=a6B.(﹣a2)3=a6C.a8÷a2=a6D.(a+b)2=a2+b2【答案】C【解析】根据同底数幂的乘法,积的乘方和幂的乘方,同底数幂的除法,完全平方公式分别求每个式子的值,再判断即可.【解答】解:A.a2•a3=a5,故本选项不符合题意;B.(﹣a2)3=﹣a6,故本选项不符合题意;C.a8÷a2=a6,故本选项符合题意;D.(a+b)2=a2+2ab+b2,故本选项不符合题意;故选:C.【点睛】本题考查了同底数幂的乘法,积的乘方和幂的乘方,同底数幂的除法,完全平方公式等知识点,能正确求出每个式子的值是解此题的关键.3.[2020安徽中考原创]数据显示,冠状肺炎疫情之前,我国口罩总体产能是每天2000多万只,产能为全球最高,占全球近半产能规模.而目前,我国口罩日产量已经达到1.16亿只,而这一产值的提高仅仅用了9天的时间!让全世界见证了中国速度和中国制造的价值所在!将数据1.16亿用科学计数法表示为()A.1.16×108B.11.6×107C.0.116×109D.1.16×107【答案】A【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:116000000=1.17×108.故选A.【点睛】本题考查了科学计数法,表示时关键要正确确定a的值以及n的值.4.[2019合肥包河区一模]从图1的正方体上截去一个三棱锥,得到一个几何体,如图2.从正面看图2的几何体,得到的平面图形是()A.B.C.D.【答案】D【解析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看是,故选:D.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.5.[2019合肥一六八中学一模]小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.180°B.210°C.360°D.270°【答案】B【解析】根据三角形的外角的性质分别表示出∠α和∠β,计算即可.【解答】解:∠α=∠1+∠D,∠β=∠4+∠F,∴∠α+∠β=∠1+∠D+∠4+∠F=∠2+∠D+∠3+∠F=∠2+∠3+30°+90°=210°,故选:B.【点睛】本题考查的是三角形外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.6.[2019安徽省芜湖二十九中一模]“同吋掷两枚质地均匀的骰子,至少有一枚骰子的点数是3”的概率为()A.B.C.D.【答案】B【解析】首先利用列表法,列举出所有的可能,再看至少有一个骰子点数为3的情况占总情况的多少即可.【解答】解:列表如下1234561(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由表可知一共36种等可能结果,其中至少有一枚骰子的点数是3的有11种结果,所以至少有一枚骰子的点数是3的概率为,故选:B.【点睛】此题主要考查了列表法求概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是放回实验,找到两个骰子点数相同的情况数和至少有一个骰子点数为3的情况数是关键.7.[2019年福建省龙岩市武平县中考数学模拟试卷]如图,平行四边形ABCD中,对角线AC,BD相交于点O,点E是CD的中点,则△ODE与△AOB的面积比为()A.1:2B.1:3C.1:4D.1:5【答案】A【解析】由题意可得:S△AOB=S△COD,由点E是CD中点,可得S△ODE=S△COD=S△AOB.即可求△ODE与△AOB的面积比.【解答】∵四边形ABCD是平行四边形∴AO=CO,BO=DO∴S△AOB=S△BOC,S△BOC=S△COD.∴S△AOB=S△COD.∵点E是CD的中点∴S△ODE=S△COD=S△AOB.∴△ODE与△AOB的面积比为1:2故选:A.【点睛】本题主要考查了三角形的中线性质以及平行四边形的性质,能够熟练掌握是解题关键.8.[2019年海南省中考数学模拟试卷(一)]某文化衫经过两次涨价,每件零售价由81元提高到100元.已知两次涨价的百分率都为x,根据题意,可得方程()A.81(1+x)2=100B.8l(1﹣x)2=100C.81(1+x%)2=100D.81(1+2x)=100【答案】A【解析】由两次涨价的百分率都为x,结合文化衫原价及两次涨价后的价格,即可列出关于x的一元二次方程,此题得解.【解答】∵两次涨价的百分率都为x,∴81(1+x)2=100.故选:A.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.[2019年湖北省武汉市武昌区中考数学模拟试卷]如图,在平面直角坐标系中,点P(1,4).Q(m,n)在函数y=(k>0)的图象上,当m>1时,过点P分别作x轴.y轴的垂线,垂足为点A.B;过点Q分别作x轴.y轴的垂线,垂足为点C.D,QD交PA于点E,随着m的增大,四边形ACQE的面积()A.增大B.减小C.先减小后增大D.先增大后减小【答案】A【解析】首先利用m和n表示出AC和CQ的长,则四边形ACQE的面积即可利用m.n表示,然后根据函数的性质判断.【解答】由题意得AC=m﹣1,CQ=n,则S四边形ACQE=AC•CQ=(m﹣1)n=mn﹣n.∵P(1,4).Q(m,n)在函数y=(x>0)的图象上,∴mn=k=4(常数).∴S四边形ACQE=AC•CQ=4﹣n,∵当m>1时,n随m的增大而减小,∴S四边形ACQE=4﹣n随m的增大而增大.故选:A.【点睛】本题考查了反比例函数面积问题,正确的识图和运用k的几何意义是解题的关键.10.[安徽省二十所初中名校教育联盟中考数学一模]在Rt△ABC中,∠ACB=90°,AC=8,BC=3,点D是BC边上一动点,连接AD交以CD为直径的圆于点E.则线段BE长度的最小值为()A.B.1C.D.【答案】B【解析】作AC为直径的圆,即可得当O.E.B三点共线时,BE是最短,也即求OB的长度即可求.【解答】解:如图,作以AC为直径的圆,圆心为O∵E点在以CD为直径的圆上∴∠CED=90°∴∠AEC=180°﹣∠CED=90°∴点E也在以AC为直径的圆上,若BE最短,则OB最短∵AC=8,∴OC=4∵BC=3,∠ACB=90°∴OB===5∵OE=OC=4∴BE=OB﹣OE=5﹣4=1故选:B.【点睛】此题主要考查勾股定理,圆的性质.利用构造法是解题的关键.二.填空题(本大题共4小题,每小题5分,满分20分)11.[安徽省合肥市瑶海区一模]分解因式:x3﹣4x2+4x=.【答案】x(x﹣2)2【解析】首先提取公因式x,然后利用完全平方式进行因式分解即可.【解答】解:x3﹣4x2+4x=x(x2﹣4x+4)=x(x﹣2)2,故答案为x(x﹣2)2.【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.12.[安徽省芜湖市一模]抛物线𝑦=𝑥2向左平移1个单位,所得的新抛物线的解析式为______.【答案】𝑦=(𝑥+1)2【解析】先确定抛物线𝑦=𝑥2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后对应点的坐标为(−1,0),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线𝑦=𝑥2的顶点坐标为(0,0),把点(0,0)向左平移1个单位所得对应点的坐标为(−1,0),所以新抛物线的解析式为𝑦=(𝑥+1)2.故答案为𝑦=(𝑥+1)2.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13.[2019年甘肃省张掖市高台县中考数学模拟试卷]如图,在Rt△ABC中,∠ACB=90°,∠A=56°,以BC为直径的⊙O交AB于点D,E是⊙O上一点,且=,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为.【答案】112°【解析】直接利用互余的性质再结合圆周角定理得出∠COE的度数,再利用四边形内角和定理得出答案.【解答】∵∠ACB=90°,∠A=56°,∴∠ABC=34°,∵=,∴2∠ABC=∠COE=68°,又∵∠OCF=∠OEF=90°,∴∠F=360°﹣90°﹣90°﹣68°=112°.故答案为:112°.【点睛】本题主要考察了圆周角定理以及四边形内角和定理等基本性质,熟练掌握相关定理内容是解题关键.14.[2019合肥一六八中学一模]如图,在矩形ABCD中,AB=6,BC=4,点E是边BC上一动点,把△DCE沿DE折叠得△DFE,射线DF交直线CB于点P,当△AFD为等腰三角形时,DP的长为.【答案】或.【解析】先根据AD=BC=4,DF=CD=AB=6,得出AD<DF,再分两种情况进行讨论:①当FA=FD时,过F作GH⊥AD与G,交BC于H,根据△DGF∽△PHF,得出=,即=,进而解得PF=﹣6,进而得出DP的长;②当AF=AD=4时,过F作FH⊥BC于H,交DA的延长线于G,根据勾股定理求得FG=,FH=6﹣,再根据△DFG∽△PFH,得出=,即=,进而解得PF=﹣6,即可得出PD的长.【解答】解:∵AD=BC=4,DF=CD=AB=6,∴AD<DF,故分两种情况:①如图所示,当FA=FD时,过F作GH⊥AD与G,交BC于H,则HG⊥BC,DG=AD=2,∴Rt△DFG中,GF==4,∴FH=6﹣4,∵DG∥PH,∴△DGF∽△PHF,∴=,即=,解得PF=﹣6,∴DP=DF+PF=6+﹣6=;②如图所示,当AF=AD=4时,过F作FH⊥BC于H,交DA的延长线于G,则Rt△AFG中,AG2+FG2=AF2,即AG2+FG2=16;Rt△DFG中,DG2+FG2=DF2,即(AG+4)2+FG2=36;联立两式,解得FG=,∴FH=6﹣,∵∠G=∠FHP=90°,∠DFG=∠PFH,∴△DFG∽△PFH,∴=,即=,解得PF=﹣6,∴DP=DF+PF=6+﹣6=,故答案为:或.【点睛】本题是折叠问题,主要考查了相似三角形的判定与性质,勾股定理,等腰三角形的性质以及矩形的性质的综合应用,解决问题的关键是作辅助线构造相似三角形以及直角三角形,运用相似三角形的对应边成比例列出方程,求得线段的长.解题时注意分类思想的运用.三.(本大题共2小题,每小题8分,满分16分)15.[2020安徽省原创]计算:sin30°+(2020)0﹣+()﹣1【答案】【解析】根据零指数幂和负指数幂的运算法则,算术平方根的定义及特殊角的三角函数值求解即可.【解答】解:原式=+1﹣2

1 / 24
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功