第十一章计数原理专题1排列与组合(理科)【三年高考】1.【2017课标II,理6】安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种2.【2017浙江,16】从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有______中不同的选法.(用数字作答)3.【2017天津,理14】用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个.(用数字作答)4.【2016高考新课标2理】如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()(A)24(B)18(C)12(D)95.【2016年高考四川理】用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为(A)24(B)48(C)60(D)726.【2016高考新课标3理】定义“规范01数列”na如下:na共有2m项,其中m项为0,m项为1,且对任意2km,12,,,kaaa中0的个数不少于1的个数.若4m,则不同的“规范01数列”共有()(A)18个(B)16个(C)14个(D)12个7.【2016高考江苏卷】(1)求3467–47CC的值;(2)设m,nN*,n≥m,求证:(m+1)Cmm+(m+2)+1Cmm+(m+3)+2Cmm+…+n–1Cmn+(n+1)Cmn=(m+1)+2+2Cmn.8.【2015高考四川,理6】用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()(A)144个(B)120个(C)96个(D)72个9.【2015高考上海,理8】在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为(结果用数值表示).【2017考试大纲】二项式定理(1)能用计数原理证明二项式定理.(2)会用二项式定理解决与二项展开式有关的简单问题.【三年高考命题回顾】纵观前三年各地高考试题,对排列与组合知识的考查均以应用题的形式出现,题型为选择题、填空题,题量多是一道,分值为5分,属于中档题.内容以考查排列、组合的基础知识为主.题目难度与课本习题难度相当,但有个别题目难度较大,重点考查分析问题,解决问题的能力及分类讨论的数学思想方法.【2018年高考复习建议与高考命题预测】由前三年的高考命题形式可以看出,排列、组合是高考数学相对独立的内容,也是密切联系实际的一部分.预测2018年高考中,应该注重基本概念,基础知识和基本运算的考查.试题难度不会太大,多以选择、填空的形式出现.排列组合的试题会以现实生活中的生产问题、经济问题为背景,不会仅是人或数的排列.以排列组合应用题为载体,考查学生的抽象概括能力,分析能力,综合解决问题的能力.排列、组合不仅是高中数学的重点内容,而且在实际中有广泛的应用,因此新高考会有题目涉及;考察形式:单独的考题会以选择题、填空题的形式出现,属于中低难度的题目,排列组合有时与概率结合出现在解答题中难度较小,属于高考题中的中低档题目;复习建议:⑴使用分类计数原理还是分步计数原理要根据我们完成某件事情时采取的方式而定,分类来完成这件事情时用分类计数原理,分步骤来完成这件事情时用分步计数原理.怎样确定是分类,还是分步骤?“分类”表现为其中任何一类均可独立完成所给事件,而“分步骤”必须把各步骤均完成才能完成所给事情.所以准确理解两个原理的关键在于明确:分类计数原理强调完成一件事情的几类办法互不干扰,彼此之间交集为空集,并集为全集,不论哪一类办法中的哪一种方法都能单独完成事件;分步计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成事件,步与步之间互不影响,即前一步用什么方法不影响后一步采取什么方法.⑵排列与组合定义相近,它们的区别在于是否与顺序有关.⑶复杂的排列问题常常通过试验、画简图、小数字简化等手段使问题直观化,从而寻求解题途径,由于结果的正确性难以直接检验,因而常需要用不同的方法求解来获得检验.⑷按元素的性质进行分类、按事件发生的连续过程分步,是处理组合问题的基本思想方法,要注意题设中“至少”“至多”等限制词的意义.⑸处理排列组合的综合性问题,一般思想方法是先选元素(组合),后排列,按元素的性质“分类”和按事件发生的连续过程“分步”,始终是处理排列、组合问题的基本方法和原理,通过解题训练要注意积累分类和分步的基本技能.⑹在解决排列组合综合性问题时,必须深刻理解排列与组合的概念,能够熟练确定——问题是排列问题还是组合问题,牢记排列数、组合数计算公式与组合数性质.容易产生的错误是重复和遗漏计数.常见的解题策略有以下几种:①特殊元素优先安排的策略;②合理分类与准确分步的策略;③排列、组合混合问题先选后排的策略;④正难则反、等价转化的策略;⑤相邻问题捆绑处理的策略;⑥不相邻问题插空处理的策略;⑦定序问题除法处理的策略;⑧分排问题直排处理的策略;⑨“小集团”排列问题中先整体后局部的策略;⑩构造模型的策略.【2018年高考考点定位】本节内容高考的重点就是利用计数原理,排列组合,排列数、组合数计算公式与组合数性质,重点考查学生的抽象概括能力,分析问题,解决问题的能力及分类讨论的数学思想方法.题型既有选择题也有填空题,难度中等偏下,将排列组合与概率统计相结合是近几年高考的一大热点.【考点1】计数原理[来源:Z|xx|k.Com]【备考知识梳理】1.分类加法计数原理(加法原理)的概念一般形式:完成一件事有n类不同方案,在第1类方案中有1m种不同的方法,在第2类方案中有2m种不同的方法,……,在第n类方案中有nm种不同的方法,那么完成这件事共有N=1m+2m+……+nm种不同的方法.2.分步乘法计数原理(乘法原理)的概念一般形式:完成一件事需要n个步骤,做第1步有1m种不同的方法,做第2步有2m种不同的方法,……,做第n步有nm种不同的方法,那么完成这件事共有N=12nmmm…种不同的方法.3.两个原理的区别:学科*网(1)“每类”间与“每步”间的关系不同:分类加法计数原理中的每一类方案中的任何一种方法、不同类之间的任何一种方法都是相互独立,互不依赖的,且是一次性的;而分步乘法计数原理中的每一步是相互依赖,且是连续性的.(2)“每类”与“每步”完成的效果不同:分类加法计数原理中所描述的每一种方法完成后,整个事件就完成了,而分步乘法计数原理中每一步中的每一种方法得到的只是中间结果,任何一步都不能独立完成这件事.4.切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行,同时要优先考虑题中的限制条件.【规律方法技巧】1.计数问题中如何判定是分类加法计数原理还是分步乘法计数原理:如果已知的每类方法中的每一种方法都能单独完成这件事,用分类加法计数原理;如果每类方法中的每一种方法只能完成事件的一部分,用分步乘法计数原理.2.利用分类计数原理解决问题时:(1)将一个比较复杂的问题分解为若干个“类别”,先分类解决,然后将其整合,如何合理进行分类是解决问题的关键.(2)要准确把握分类加法计数原理的两个特点:①根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏;②分类时,注意完成这件事情的任何一种方法必须属于某一类,不能重复;③对于分类问题所含类型较多时也可考虑使用间接法.3.利用分步乘法计数原理解决问题时要注意:(1)要按事件发生的过程合理分步,即考虑分步的先后顺序.(2)各步中的方法互相依存,缺一不可,只有各步骤都完成才算完成这个事件.(3)对完成各步的方法数要准确确定.4.用两个计数原理解决计数问题时,关键是明确需要分类还是分步.(1)分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.(2)分步要做到“步骤完整”,只有完成了所有步骤,才完成任务,根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.(3)对于复杂问题,可同时运用两个计数原理或借助列表、画图的方法来帮助分析,使问题形象化、直观化.(4)在应用分类加法计数原理和分步乘法计数原理时,一般先分类再分步,每一步当中又可能用到分类加法计数原理.5.在解决具体问题时,首先必须弄清楚是“分类”还是“分步”,接着还要搞清楚“分类”或者“分步”的具体标准是什么.5.(1)分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的.(2)分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相关联的.6.分类加法计数原理的两个条件:(1)根据问题的特点能确定一个适合于它的分类标准,然后在这个标准下进行分类;(2)完成这件事的任何一种方法必须属于某一类,并且分别属于不同类的两种方法是不同的方法,只有满足这些条件,才可以用分类加法计数原理.分步乘法计数原理的两个条件:(1)明确题目中的“完成这件事”是什么,确定完成这件事需要几个步骤,且每步都是独立的.(2)将完成这件事划分成几个步骤来完成,各步骤之间有一定的连续性,只有当所有步骤都完成了,整个事件才算完成,这是分步的基础,也是关键.从计数上来看,各步的方法数的积就是完成事件的方法总数.7.应用两种原理解题:(1)分清要完成的事情是什么?(2)分清完成该事情是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;(3)有无特殊条件的限制;(4)检验是否有重漏.8.涂色问题:涂色问题是由两个基本原理和排列组合知识的综合运用所产生的一类问题,这类问题是计数原理应用的典型问题,由于涂色本身就是策略的一个运用过程,能较好地考查考生的思维连贯性与敏捷性,加之涂色问题的趣味性,自然成为新课标高考的命题热点.涂色问题的关键是颜色的数目和在不相邻的区域内是否可以使用同一种颜色,具体操作法和按照颜色的数目进行分类法是解决这类问题的首选方法.涂色问题的实质是分类与分步,一般是整体分步,分步过程中若出现某一步需分情况说明时还要进行分类.涂色问题通常没有固定的方法可循,只能按照题目的实际情况,结合两个基本原理和排列组合的知识灵活处理.【考点针对训练】1.【2017届四川省资阳市高三上学期期末】设集合1234{,,,|1,0,1,1,2,3,4}iAxxxxxi,那么集合A中满足条件“222212344xxxx”的元素个数为()A.60B.65C.80D.812.【重庆市第一中学2017届高三第二次月考】将大小形状相同的3个黄球和5个黑球放入如图所示的的十宫格中,每格至多放一个,要求相邻方格的小球不同色(有公共边的两个方格为相邻),如果同色球不加以区分,则所有不同的放法种数为()A.B.36C.24D.20【考点2】排列组合综合【备考知识梳理】1.排列的相关概念及排列数公式(1)排列的定义:从n个不同元素中取出m(mn)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)排列数的定义:从n个不同元素中取出m(mn)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用mnA表示.(3)排列数公式:121mnAnnnnm这里,nmNæ并且mn(4)全排列:n个不同元素全部取出的一个排列,叫做n个元素的一个全排列,1221!nnAnnnn(叫做n的阶乘).排列数公式写成阶乘的形式为!!mnnAnm,这里规定0!1.2.组合的相关概念及组合数公式(1)组合的定义:从n个不同元素中取出m(mn)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数的定义:从n个不同元素中取出m(mn)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用mnC表示.(3)组合数的计算公式:121!!!!mmnnmmnnnnm