湖南省2016届高考数学模拟试卷(三)文(含解析)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2016年湖南省高考数学模拟试卷(文科)(三)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a为实数且(2+ai)(a﹣2i)=8,则a=()A.﹣1B.0C.1D.22.已知集合A={x|﹣3<x<3},B={x|x(x﹣4)<0},则A∪B=()A.(0,4)B.(﹣3,4)C.(0,3)D.(3,4)3.“﹣1<x<2”是“|x﹣2|<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.若某市8所中学参加中学生合唱比赛的得分用茎叶图表示(如图1),其中茎为十位数,叶为个位数,则这组数据的中位数和平均数分别是()A.91,91.5B.91,92C.91.5,91.5D.91.5,925.设等差数列{an}的前n项和为Sn,已知a1=﹣9,a2+a8=﹣2,当Sn取得最小值时,n=()A.5B.6C.7D.86.设=(1,2),=(1,1),=+k,若,则实数k的值等于()A.﹣B.﹣C.D.7.函数y=sin(2x+φ),的部分图象如图,则φ的值为()A.或B.C.D.8.执行如图所示的程序框图,输出S的值为时,k是()A.5B.3C.4D.29.已知圆C过点(1,0),且圆心在x轴的正半轴上,直线l:y=x﹣1被该圆所截得的弦长为,则圆C的标准方程为()A.(x+1)2+y2=4B.(x﹣3)2+y2=4C.(x﹣1)2+y2=4D.(x+3)2+y2=410.已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π11.已知A、B为双曲线E的左右顶点,点M在E上,AB=BM,三角形ABM有一个角为120°,则E的离心率为()A.B.C.D.212.如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方向,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取名学生.14.若变量x,y满足约束条件,则z=2x+3y的最大值为.15.一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.16.已知函数f(x)=x3﹣3ax(a∈R),若直线x+y+m=0对任意的m∈R都不是曲线y=f(x)的切线,则a的取值范围为.三、解答题:本大题共5小题,满分60分,解答应写出文字说明、证明过程或演算步骤17.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知△ABC的面积.(Ⅰ)求sinA与cosA的值;(Ⅱ)设,若tanC=2,求λ的值.18.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100](1)求频率分布图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.19.如图,设四棱锥E﹣ABCD的底面为菱形,且∠ABC=60°,AB=EC=2,AE=BE=.(Ⅰ)证明:平面EAB⊥平面ABCD;(Ⅱ)求四棱锥E﹣ABCD的体积.20.已知函数f(x)=2lnx﹣ax+a(a∈R).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)≤0恒成立,证明:当0<x1<x2时,.21.已知椭圆C1:+x2=1(a>1)与抛物线C:x2=4y有相同焦点F1.(Ⅰ)求椭圆C1的标准方程;(Ⅱ)已知直线l1过椭圆C1的另一焦点F2,且与抛物线C2相切于第一象限的点A,设平行l1的直线l交椭圆C1于B,C两点,当△OBC面积最大时,求直线l的方程.四.请考生在第(22)、(23)(24)三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上.[选修4-1几何证明选讲]22.如图,AB为圆O的直径,CB是圆O的切线,弦AD∥OC.(Ⅰ)证明:CD是圆O的切线;(Ⅱ)AD与BC的延长线相交于点E,若DE=3OA,求∠AEB的大小.[选修4-4坐标系与参数方程]23.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系.已知曲线C1:(t为参数),C2:(θ为参数).(Ⅰ)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:ρ(cosθ﹣2sinθ)=7距离的最小值.[选修4-5不等式选讲]24.已知函数f(x)=|x﹣2|,g(x)=﹣|x+3|+m.(1)解关于x的不等式f(x)+a﹣1>0(a∈R);(2)若函数f(x)的图象恒在函数g(x)图象的上方,求m的取值范围.2016年湖南省高考数学模拟试卷(文科)(三)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a为实数且(2+ai)(a﹣2i)=8,则a=()A.﹣1B.0C.1D.2【考点】复数代数形式的乘除运算.【专题】计算题;方程思想;数学模型法;数系的扩充和复数.【分析】利用复数代数形式的乘除运算化简,由复数相等的条件列式求得a值.【解答】解:由(2+ai)(a﹣2i)=8,得4a+(a2﹣4)i=8,∴,解得a=2.故选:D.【点评】本题考查复数代数形式的乘除运算,考查了复数相等的条件,是基础题.2.已知集合A={x|﹣3<x<3},B={x|x(x﹣4)<0},则A∪B=()A.(0,4)B.(﹣3,4)C.(0,3)D.(3,4)【考点】并集及其运算.【专题】集合.【分析】利用并集的性质求解.【解答】解:∵集合A={x|﹣3<x<3},B={x|x(x﹣4)<0}={x|0<x<4},∴A∪B={x|﹣3<x<4}=(﹣3,4).故选:B.【点评】本题考查并集的求法,是基础题,解题时要认真审题.3.“﹣1<x<2”是“|x﹣2|<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】计算题;综合法;不等式的解法及应用;简易逻辑.【分析】由|x﹣2|<1,解得1<x<3,即可判断出结论.【解答】解:由|x﹣2|<1,解得1<x<3,∴“﹣1<x<2”是“|x﹣2|<1”的既不充分也不必要条件.故选:D.【点评】本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.4.若某市8所中学参加中学生合唱比赛的得分用茎叶图表示(如图1),其中茎为十位数,叶为个位数,则这组数据的中位数和平均数分别是()A.91,91.5B.91,92C.91.5,91.5D.91.5,92【考点】茎叶图.【专题】计算题;概率与统计.【分析】根据茎叶图中的数据,计算这组数据的中位数与平均数即可.【解答】解:把茎叶图中的数据按大小顺序排列,如下;87、88、90、91、92、93、94、97;∴这组数据的中位数为=91.5,平均数是(87+88+90+91+92+93+94+97)=91.5.故选:C.【点评】本题考查了利用茎叶图中的数据求中位数与平均数的应用问题,是基础题目.5.设等差数列{an}的前n项和为Sn,已知a1=﹣9,a2+a8=﹣2,当Sn取得最小值时,n=()A.5B.6C.7D.8【考点】等差数列的性质.【专题】等差数列与等比数列.【分析】利用等差数列的通项公式,可求得公差d=2,从而可得其前n项和为Sn的表达式,配方即可求得答案.【解答】解:等差数列{an}中,a1=﹣9,a2+a8=2a1+8d=﹣18+8d=﹣2,解得d=2,所以,Sn=﹣9n+=n2﹣10n=(n﹣5)2﹣25,故当n=5时,Sn取得最小值,故选:A.【点评】本题考查等差数列的性质,考查其通项公式与求和公式的应用,考查运算求解能力,属于基础题.6.设=(1,2),=(1,1),=+k,若,则实数k的值等于()A.﹣B.﹣C.D.【考点】数量积判断两个平面向量的垂直关系.【专题】平面向量及应用.【分析】由题意可得的坐标,进而由垂直关系可得k的方程,解方程可得.【解答】解:∵=(1,2),=(1,1),∴=+k=(1+k,2+k)∵,∴•=0,∴1+k+2+k=0,解得k=﹣故选:A【点评】本题考查数量积和向量的垂直关系,属基础题.7.函数y=sin(2x+φ),的部分图象如图,则φ的值为()A.或B.C.D.【考点】y=Asin(ωx+φ)中参数的物理意义;由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】计算题;三角函数的图像与性质.【分析】由已知中函数的图象,通过坐标(,0)代入解析式,结合φ求出φ值,得到答案.【解答】解:由已知中函数y=sin(2x+φ)(φ)的图象过(,0)点代入解析式,结合五点法作图,sin(+φ)=0,+φ=π+2kπ,k∈Z,∵φ,∴k=0,∴φ=,故选:B.【点评】本题考查的知识点是由y=Asin(ωx+φ)的部分图象确定其解析式,特殊点是解答本题的关键.8.执行如图所示的程序框图,输出S的值为时,k是()A.5B.3C.4D.2【考点】循环结构.【专题】计算题;图表型;试验法;算法和程序框图.【分析】模拟执行程序,依次写出每次循环k的值,当k=5时,大于4,计算输出S的值为,从而得解.【解答】解:模拟执行程序,可得每次循环的结果依次为:k=2,k=3,k=4,k=5,大于4,可得S=sin=,输出S的值为.故选:A.【点评】本题主要考查了循环结果的程序框图,模拟执行程序正确得到k的值是解题的关键,属于基础题.9.已知圆C过点(1,0),且圆心在x轴的正半轴上,直线l:y=x﹣1被该圆所截得的弦长为,则圆C的标准方程为()A.(x+1)2+y2=4B.(x﹣3)2+y2=4C.(x﹣1)2+y2=4D.(x+3)2+y2=4【考点】直线与圆相交的性质.【专题】直线与圆.【分析】设圆心C的坐标为(a,0),a>0,求得圆心到直线l:y=x﹣1的距离d的值,再根据半径r=|a﹣1|=,解得a的值,可得圆心坐标和半径,从而求得圆C的标准方程.【解答】解:设圆心C的坐标为(a,0),a>0,则圆心到直线l:y=x﹣1的距离为d==.由于半径r=|a﹣1|=,解得a=3,或a=﹣1(舍去),故圆C的圆心为(3,0),半径为3﹣1=2,故圆C的标准方程为(x﹣3)2+y2=4,故选B.【点评】本题主要考查直线和圆相交的性质,点到直线的距离公式、弦长公式的应用,属于中档题.10.已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【考点】球的体积和表面积.【专题】计算题;空间位置关系与距离.【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时VO﹣ABC=VC﹣AOB===36,故R=6,则球O的表面积为4πR2=144π,故选C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.11.已知A、B为双曲线E的左右

1 / 25
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功