(鲁京津琼专用)2020版高考数学大一轮复习 第八章 立体几何与空间向量 8.2 空间点、直线、平面

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

§8.2空间点、直线、平面之间的位置关系第八章立体几何与空间向量ZUIXINKAOGANG最新考纲1.借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义.2.了解可以作为推理依据的公理和定理.3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.NEIRONGSUOYIN内容索引基础知识自主学习题型分类深度剖析课时作业1基础知识自主学习PARTONE1.四个公理知识梳理ZHISHISHULI公理1:如果一条直线上的在一个平面内,那么这条直线在此平面内.公理2:过的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们过该点的公共直线.公理4:平行于同一条直线的两条直线互相.两点不在一条直线上有且只有一条平行2.直线与直线的位置关系共面直线异面直线:不同在一个平面内,没有公共点平行相交任何直线直线(1)位置关系的分类(2)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的叫做异面直线a与b所成的角(或夹角).0,π2.锐角(或直角)3.直线与平面的位置关系有、、___________三种情况.4.平面与平面的位置关系有、两种情况.直线在平面内直线与平面相交直线与平面平行平行相交5.等角定理空间中如果两个角的,那么这两个角相等或互补.两边分别对应平行②范围:.1.分别在两个不同平面内的两条直线为异面直线吗?提示不一定.因为异面直线不同在任何一个平面内.分别在两个不同平面内的两条直线可能平行或相交.【概念方法微思考】2.空间中如果两个角的两边分别对应平行,那么这两个角一定相等吗?提示不一定.如果这两个角开口方向一致,则它们相等,若反向则互补.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.()(2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.()(3)如果两个平面有三个公共点,则这两个平面重合.()(4)经过两条相交直线,有且只有一个平面.()基础自测JICHUZICE12345√×√×6(5)没有公共点的两条直线是异面直线.()(6)若a,b是两条直线,α,β是两个平面,且a⊂α,b⊂β,则a,b是异面直线.()12345××6题组二教材改编2.如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成角的大小为A.30°B.45°C.60°D.90°√12345解析连接B1D1,D1C,则B1D1∥EF,故∠D1B1C即为所求的角.又B1D1=B1C=D1C,∴△B1D1C为等边三角形,∴∠D1B1C=60°.6123453.如图,在三棱锥A—BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则(1)当AC,BD满足条件________时,四边形EFGH为菱形;AC=BD∵EF∥AC,EH∥BD,且EF=12AC,EH=12BD,解析∵四边形EFGH为菱形,∴EF=EH,∴AC=BD.解析∵四边形EFGH为正方形,∴EF=EH且EF⊥EH,∴AC=BD且AC⊥BD.(2)当AC,BD满足条件__________________时,四边形EFGH为正方形.AC=BD且AC⊥BD64.α是一个平面,m,n是两条直线,A是一个点,若m⊄α,n⊂α,且A∈m,A∈α,则m,n的位置关系不可能是A.垂直B.相交C.异面D.平行12345题组三易错自纠解析依题意,m∩α=A,n⊂α,∴m与n可能异面、相交(垂直是相交的特例),一定不平行.√6123455.如图,α∩β=l,A,B∈α,C∈β,且C∉l,直线AB∩l=M,过A,B,C三点的平面记作γ,则γ与β的交线必通过A.点AB.点BC.点C但不过点MD.点C和点M解析∵AB⊂γ,M∈AB,∴M∈γ.又α∩β=l,M∈l,∴M∈β.根据公理3可知,M在γ与β的交线上.同理可知,点C也在γ与β的交线上.√6123456.如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH在原正方体中互为异面的对数为__.解析平面图形的翻折应注意翻折前后相对位置的变化,则AB,CD,EF和GH在原正方体中,显然AB与CD,EF与GH,AB与GH都是异面直线,而AB与EF相交,CD与GH相交,CD与EF平行.故互为异面的直线有且只有3对.362题型分类深度剖析PARTTWO题型一平面基本性质的应用例1如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;师生共研(2)CE,D1F,DA三线共点.证明∵EF∥CD1,EFCD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE,D1F,DA三线共点.共面、共线、共点问题的证明(1)证明共面的方法:①先确定一个平面,然后再证其余的线(或点)在这个平面内;②证两平面重合.(2)证明共线的方法:①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定直线上.(3)证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.思维升华跟踪训练1如图,在空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别在BC,CD上,且BG∶GC=DH∶HC=1∶2.(1)求证:E,F,G,H四点共面;证明∵E,F分别为AB,AD的中点,∴EF∥BD.∴GH∥BD,∴EF∥GH.∴E,F,G,H四点共面.∵在△BCD中,BGGC=DHHC=12,(2)设EG与FH交于点P,求证:P,A,C三点共线.证明∵EG∩FH=P,P∈EG,EG⊂平面ABC,∴P∈平面ABC.同理P∈平面ADC.∴P为平面ABC与平面ADC的公共点.又平面ABC∩平面ADC=AC,∴P∈AC,∴P,A,C三点共线.题型二判断空间两直线的位置关系例2(1)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交师生共研解析由直线l1和l2是异面直线可知l1与l2不平行,故l1,l2中至少有一条与l相交.故选D.√(2)如图,在正方体ABCD-A1B1C1D1中,点E,F分别在A1D,AC上,且A1E=2ED,CF=2FA,则EF与BD1的位置关系是A.相交但不垂直B.相交且垂直C.异面D.平行√空间中两直线位置关系的判定,主要是异面、平行和垂直的判定.异面直线可采用直接法或反证法;平行直线可利用三角形(梯形)中位线的性质、公理4线面平行与面面平行的性质定理;垂直关系往往利用线面垂直或面面垂直的性质来解决.思维升华跟踪训练2(1)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件√解析若直线a和直线b相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a和直线b可能平行或异面或相交,故选A.(2)如图所示,正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论为_____.(注:把你认为正确的结论序号都填上)③④题型三求两条异面直线所成的角师生共研例3(2018·青岛模拟)如图,在底面为正方形,侧棱垂直于底面的四棱柱ABCD—A1B1C1D1中,AA1=2AB=2,则异面直线A1B与AD1所成角的余弦值为A.15B.25C.35D.45√引申探究解设AA1AB=t(t0),则AA1=tAB.∵A1C1=2,A1B=t2+1=BC1,∴cos∠A1BC1=A1B2+BC21-A1C212×A1B×BC1=t2+1+t2+1-22×t2+1×t2+1=910.将上例条件“AA1=2AB=2”改为“AB=1,若异面直线A1B与AD1所成角的余弦值为910”,试求AA1AB的值.∵AB=1,∴AA1=t.∴t=3,即AA1AB=3.用平移法求异面直线所成的角的三个步骤(1)一作:根据定义作平行线,作出异面直线所成的角;(2)二证:证明作出的角是异面直线所成的角;(3)三求:解三角形,求出所作的角.思维升华跟踪训练3(2018·全国Ⅱ)在正方体ABCD-A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为A.22B.32C.52D.72√直观想象是指借助几何直观和空间想象感知事物的形态与变化,利用空间形式特别是图形,理解和解决数学问题.核心素养之直观想象HEXINSUYANGZHIZHIGUANXIANGXIANG立体几何中的线面位置关系例如图所示,四边形ABEF和ABCD都是梯形,BC∥AD且BC=12AD,BE∥FA且BE=12FA,G,H分别为FA,FD的中点.(1)证明:四边形BCHG是平行四边形;证明由已知FG=GA,FH=HD,∴GH∥BC且GH=BC,∴四边形BCHG为平行四边形.可得GH∥AD且GH=12AD.又BC∥AD且BC=12AD,(2)C,D,F,E四点是否共面?为什么?解∵BE∥AF且BE=12AF,G为FA的中点,∴BE∥FG且BE=FG,∴四边形BEFG为平行四边形,∴EF∥BG.由(1)知BG∥CH.∴EF∥CH,∴EF与CH共面.又D∈FH,∴C,D,F,E四点共面.素养提升平面几何和立体几何在点线面的位置关系中有很多的不同,借助确定的几何模型,利用直观想象讨论点线面关系在平面和空间中的差异.3课时作业PARTTHREE1.四条线段顺次首尾相连,它们最多可确定的平面个数为A.4B.3C.2D.112345678910111213141516基础保分练解析首尾相连的四条线段每相邻两条确定一个平面,所以最多可以确定四个平面.√2.a,b,c是两两不同的三条直线,下面四个命题中,真命题是A.若直线a,b异面,b,c异面,则a,c异面B.若直线a,b相交,b,c相交,则a,c相交C.若a∥b,则a,b与c所成的角相等D.若a⊥b,b⊥c,则a∥c12345678910111213141516解析若直线a,b异面,b,c异面,则a,c相交、平行或异面;若a,b相交,b,c相交,则a,c相交、平行或异面;若a⊥b,b⊥c,则a,c相交、平行或异面;由异面直线所成的角的定义知C正确.故选C.√3.如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,C∉l,则平面ABC与平面β的交线是A.直线ACB.直线ABC.直线CDD.直线BC√12345678910111213141516解析由题意知,D∈l,l⊂β,所以D∈β,又因为D∈AB,所以D∈平面ABC,所以点D在平面ABC与平面β的交线上.又因为C∈平面ABC,C∈β,所以点C在平面β与平面ABC的交线上,所以平面ABC∩平面β=CD.123456789101112131415164.如图所示,ABCD-A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确是A.A,M,O三点共线B.A,M,O,A1不共面C.A,M,C,O不共面D.B,B1,O,M共面√5.(2017·全国Ⅱ)已知直三棱柱ABCA1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为12345678910111213141516A.32B.155C.105D.33√123456789101112

1 / 55
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功