专题二十四物质的结构与性质高考化学(课标Ⅲ)A组课标Ⅲ卷区题组五年高考考点一原子结构与性质1.(2019课标Ⅲ,35,15分)磷酸亚铁锂(LiFePO4)可用作锂离子电池正极材料,具有热稳定性好、循环性能优良、安全性高等特点,文献报道可采用FeCl3、NH4H2PO4、LiCl和苯胺等作为原料制备。回答下列问题:(1)在周期表中,与Li的化学性质最相似的邻族元素是,该元素基态原子核外M层电子的自旋状态(填“相同”或“相反”)。(2)FeCl3中的化学键具有明显的共价性,蒸气状态下以双聚分子存在的FeCl3的结构式为,其中Fe的配位数为。(3)苯胺( )的晶体类型是。苯胺与甲苯( )的相对分子质量相近,但苯胺的熔点(-5.9℃)、沸点(184.4℃)分别高于甲苯的熔点(-95.0℃)、沸点(110.6℃),原因是。(4)NH4H2PO4中,电负性最高的元素是;P的杂化轨道与O的2p轨道形成键。(5)NH4H2PO4和LiFePO4属于简单磷酸盐,而直链的多磷酸盐则是一种复杂磷酸盐,如:焦磷酸钠、三磷酸钠等。焦磷酸根离子、三磷酸根离子如下图所示: 这类磷酸根离子的化学式可用通式表示为(用n代表P原子数)。答案(1)Mg相反(2) 4(3)分子晶体苯胺分子之间存在氢键(4)Osp3σ(5)(PnO3n+1)(n+2)-解析本题涉及知识点有对角线规则、核外电子排布、配位键、分子结构与性质等,通过能正确复述、再现、辨认相关基础知识,考查了接收、整合化学信息的能力,体现了宏观辨识与微观探析的学科核心素养。(1)根据对角线规则,Li与Mg的化学性质最相似。基态时Mg原子的两个M层电子处于3s轨道上,且自旋方向相反。(2)双聚FeCl3分子中两分子FeCl3以配位键形式结合在一起,结构式为 ,Fe的配位数为4。(3) 中只含有共价键,根据其熔、沸点数据可知,苯胺的晶体类型为分子晶体。苯胺分子间存在氢键,导致其熔、沸点高于甲苯。(4)根据NH4H2PO4中所含元素在周期表中的位置关系和电负性规律可知,氧元素电负性最高。NH4H2PO4中磷原子的价层电子对数为4,故为sp3杂化,P的sp3杂化轨道与O的2p轨道形成σ键。(5)磷酸根离子为P ,焦磷酸根离子为P2 ,三磷酸根离子为P3 。结合图示可知,每增加134O47O510O个P原子,O原子数增加3,离子所带负电荷数增加1,故可推出离子通式为(PnO3n+1)(n+2)-。2.(2018课标Ⅲ,35,15分)锌在工业中有重要作用,也是人体必需的微量元素。回答下列问题:(1)Zn原子核外电子排布式为。(2)黄铜是人类最早使用的合金之一,主要由Zn和Cu组成。第一电离能I1(Zn)I1(Cu)(填“大于”或“小于”)。原因是。(3)ZnF2具有较高的熔点(872℃),其化学键类型是;ZnF2不溶于有机溶剂而Zn-Cl2、ZnBr2、ZnI2能够溶于乙醇、乙醚等有机溶剂,原因是。(4)《中华本草》等中医典籍中,记载了炉甘石(ZnCO3)入药,可用于治疗皮肤炎症或表面创伤。ZnCO3中,阴离子空间构型为,C原子的杂化形式为。(5)金属Zn晶体中的原子堆积方式如图所示,这种堆积方式称为。六棱柱底边边长为acm,高为ccm,阿伏加德罗常数的值为NA,Zn的密度为g·cm-3(列出计算式)。答案(1)[Ar]3d104s2(2)大于Zn核外电子排布为全满稳定结构,较难失电子(3)离子键ZnF2为离子化合物,ZnCl2、ZnBr2、ZnI2的化学键以共价键为主、极性较小(4)平面三角形sp2(5)六方最密堆积(A3型) 2A656364Nac解析本题考查核外电子排布式的书写、电离能、离子的空间构型、金属的堆积模型和晶体的计算。(1)Zn是30号元素,核外有30个电子,故核外电子排布式为1s22s22p63s23p63d104s2或[Ar]3d104s2。(2)由于Zn的核外电子排布式为[Ar]3d104s2,Cu的核外电子排布式为[Ar]3d104s1,Zn核外电子排布处于全满稳定状态,第一电离能更大,所以I1(Zn)I1(Cu)。(3)ZnF2熔点较高,属于离子晶体,含有的化学键类型为离子键;ZnCl2、ZnBr2、ZnI2均是分子晶体,根据相似相溶原理知,ZnCl2、ZnBr2、ZnI2能够溶于有机溶剂。(4)ZnCO3中的阴离子为C ,C 中C原子的价层电子对数为3+ ×(4+2-3×2)=3,且无孤电子对,故空间构型为平面三角形,C原子的杂化形式为sp2。(5)由金属Zn晶体中的原子堆积方式图可知,其堆积方式为六方最密堆积;六棱柱底边边长为acm,则六棱柱底面积为(6× a· a)cm2= a2cm2,体积为 a2ccm3;根据均摊法知,一个六棱柱中含有Zn原子数目为12× +2× +3=6,所以Zn的密度ρ= = g·cm-3= g·cm-3。23O23O1212323323321612AMNNVA2656332Nac2A26033acN易混易错注意均摊法在立方体和六棱柱中的异同。3.(2014课标Ⅰ,37,15分)早期发现的一种天然二十面体准晶颗粒由Al、Cu、Fe三种金属元素组成。回答下列问题:(1)准晶是一种无平移周期序,但有严格准周期位置序的独特晶体,可通过方法区分晶体、准晶体和非晶体。(2)基态Fe原子有个未成对电子,Fe3+的电子排布式为。可用硫氰化钾检验Fe3+,形成的配合物的颜色为。(3)新制备的Cu(OH)2可将乙醛(CH3CHO)氧化成乙酸,而自身还原成Cu2O。乙醛中碳原子的杂化轨道类型为,1mol乙醛分子中含有的σ键的数目为。乙酸的沸点明显高于乙醛,其主要原因是。Cu2O为半导体材料,在其立方晶胞内部有4个氧原子,其余氧原子位于面心和顶点,则该晶胞中有个铜原子。(4)Al单质为面心立方晶体,其晶胞参数a=0.405nm,晶胞中铝原子的配位数为。列式表示Al单质的密度g·cm-3(不必计算出结果)。答案(1)X-射线衍射(2)41s22s22p63s23p63d5血红色(3)sp3、sp26NACH3COOH存在分子间氢键16(4)12 23734276.02210(0.40510)解析(1)用一定波长的X-射线照射到晶体上,根据记录仪上有无分离的斑点或明锐的谱线,可以鉴别晶体、准晶体和非晶体。(2)基态Fe原子的电子排布式为[Ar]3d64s2,价电子的轨道表示式为 ,故基态Fe原子的未成对电子数为4;Fe3+的电子排布式为[Ar]3d5或1s22s22p63s23p63d5;Fe3+与SCN-形成的配合物呈血红色。(3)CH3CHO分子中—CH3中碳原子为sp3杂化,—CHO中碳原子为sp2杂化。因乙酸分子间能形成氢键,故乙酸的沸点明显比乙醛高。Cu2O晶胞中氧原子数=4+6× +8× =8,故铜原子数为2×8=16。(4)面心立方晶胞中,铝原子的配位数为12;晶胞中Al原子数为8× +6× =4,故铝单质的密度ρ= = = g·cm-3。3d 4s 12181812mV1A73427l(0.40510)gmoNcm23734276.02210(0.40510)规律方法1.在有机物中, 中的碳原子是sp3杂化, 、 中的碳原子是sp2杂化, 中的碳原子是sp杂化,因此只要写出有机物的结构式就可迅速判断碳原子的杂化类型。2.常见金属的堆积方式的配位数应记住,简单立方堆积(Po):6;体心立方堆积(Na、Fe、K):8;六方最密堆积(Zn、Mg、Ti):12;面心立方最密堆积(Au、Ag、Cu):12。知识拓展1.Fe3+与SCN-可形成一系列配合离子,这些离子都是血红色的,实验时生成的一般是这些离子的混合物,中学阶段只要求写Fe3++3SCN- Fe(SCN)3。2.也可用K4[Fe(CN)6]或苯酚检验Fe3+,反应的离子方程式分别是4Fe3++3[Fe(CN)6]4- Fe4[Fe(CN)6]3↓(蓝色)、Fe3++6C6H5OH [Fe(C6H5O)6]3-(紫色)+6H+。4.(2013课标Ⅰ,37,15分)硅是重要的半导体材料,构成了现代电子工业的基础。回答下列问题:(1)基态Si原子中,电子占据的最高能层符号为,该能层具有的原子轨道数为,电子数为。(2)硅主要以硅酸盐、等化合物的形式存在于地壳中。(3)单质硅存在与金刚石结构类似的晶体,其中原子与原子之间以相结合,其晶胞中共有8个原子,其中在面心位置贡献个原子。(4)单质硅可通过甲硅烷(SiH4)分解反应来制备。工业上采用Mg2Si和NH4Cl在液氨介质中反应制得SiH4,该反应的化学方程式为。(5)碳和硅的有关化学键键能如下所示,简要分析和解释下列有关事实:化学键C—CC—HC—OSi—SiSi—HSi—O键能/(kJ·mol-1)356413336226318452①硅与碳同族,也有系列氢化物,但硅烷在种类和数量上都远不如烷烃多,原因是。②SiH4的稳定性小于CH4,更易生成氧化物,原因是。(6)在硅酸盐中,Si 四面体[如图(a)]通过共用顶角氧离子可形成岛状、链状、层状、骨架网状四大类结构型式。图(b)为一种无限长单链结构的多硅酸根,其中Si原子的杂化形式为,Si与O的原子数之比为,化学式为。 44O答案(1)M94(2)二氧化硅(3)共价键3(4)Mg2Si+4NH4Cl SiH4+4NH3+2MgCl2(5)①C—C键和C—H键较强,所形成的烷烃稳定。而硅烷中Si—Si键和Si—H键的键能较低,易断裂,导致长链硅烷难以生成②C—H键的键能大于C—O键,C—H键比C—O键稳定。而Si—H键的键能却远小于Si—O键,所以Si—H键不稳定而倾向于形成稳定性更强的Si—O键(6)sp31∶3[SiO3 (或Si )2]nn23O解析(1)基态Si原子的电子排布式为1s22s22p63s23p2,电子占据的最高能层为第三层,符号为M,该能层原子轨道总数=1(3s轨道)+3(3p轨道)+5(3d轨道)=9,电子数为4。(3)6个面心位置贡献的Si原子数=6× =3。(4)由题给信息可写出制备SiH4的化学方程式为Mg2Si+4NH4Cl 2MgCl2+4NH3+SiH4。(5)可根据相关键能的数据解释相关的两个事实,详见答案。(6)在Si 四面体结构中,处于四面体中心的硅原子的杂化方式为sp3;单链结构的多硅酸根中,重复出现的最小结构单元为 ,其中Si原子数目为2,1、4号氧原子为两个单元所共有,2、3、5、6、7号氧原子完全属于该单元,故每个最小单元的氧原子数目为5+2× =6,Si与O的原子数之比为2∶6=1∶3,故单链结构的多硅酸根的化学式为[SiO3 。1244O122]nn5.(2012课标,37,15分)ⅥA族的氧、硫、硒(Se)、碲(Te)等元素在化合物中常表现出多种氧化态,含ⅥA族元素的化合物在研究和生产中有许多重要用途。请回答下列问题:(1)S单质的常见形式为S8,其环状结构如下图所示,S原子采用的轨道杂化方式是;(2)原子的第一电离能是指气态电中性基态原子失去一个电子转化为气态基态正离子所需要的最低能量,O、S、Se原子的第一电离能由大到小的顺序为;(3)Se原子序数为,其核外M层电子的排布式为;(4)H2Se的酸性比H2S(填“强”或“弱”)。气态SeO3分子的立体构型为,S 离子的立体构型为;(5)H2SeO3的K1和K2分别为2.7×10-3和2.5×10-8,H2SeO4第一步几乎完全电离,K2为1.2×10-2,请根据结构与性质的关系解释:①H2SeO3和H2SeO4第一步电离程度大于第二步电离的原因:;②H2SeO4比H2SeO3酸性强的原因:;23O(6)ZnS在荧光体、光导体材料、涂料、颜料等行业中应用广泛。立方ZnS晶体结构如图所示,其晶胞边长为540.0pm,密度为g·cm-3(列式并计算),a位置S2-离子与b位置Zn2+离子之间的距离为pm(列式表示)。答案(15分)(1)sp3(