(课标Ⅱ卷)2020届高考物理一轮复习 专题七 碰撞与动量守恒课件

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

专题七碰撞与动量守恒高考物理(课标Ⅱ专用)考点一动量、动量定理五年高考A组统一命题·课标卷题组1.(2019课标Ⅰ,16,6分)最近,我国为“长征九号”研制的大推力新型火箭发动机联试成功,这标志着我国重型运载火箭的研发取得突破性进展。若某次实验中该发动机向后喷射的气体速度约为3km/s,产生的推力约为4.8×106N,则它在1s时间内喷射的气体质量约为 ()A.1.6×102kgB.1.6×103kgC.1.6×105kgD.1.6×106kg答案B本题考查了考生对动量定理的理解能力,体现了物理模型建构的核心素养,同时也增强了考生的国人自豪感。设火箭发动机在1s内喷射出气体的质量为m。以这部分气体为研究对象,应用动量定理,Ft=mv-0,解得m= =1.6×103kg。解题关键本题单位统一用国际单位制单位;研究对象选择发动机在1s内喷射出的气体。Ftv2.(2018课标Ⅱ,15,6分)高空坠物极易对行人造成伤害。若一个50g的鸡蛋从一居民楼的25层坠下,与地面的碰撞时间约为2ms,则该鸡蛋对地面产生的冲击力约为 ()A.10NB.102NC.103ND.104N答案C本题考查机械能守恒定律、动量定理。由机械能守恒定律可得mgh= mv2,可知鸡蛋落地时速度大小v= ,鸡蛋与地面作用过程中,设竖直向上为正方向,由动量定理得(F-mg)t=0-(-mv),可知鸡蛋对地面产生的冲击力大小为F= +mg,每层楼高度约为3m,则h=24×3m=72m,得F≈949N,接近103N,故选项C正确。易错点拨估算能力(1)每层楼高度约为3m,注意身边的物理知识。(2)在计算时重点注意数量级。122ghmvt3.(2018课标Ⅰ,14,6分)高铁列车在启动阶段的运动可看作初速度为零的匀加速直线运动。在启动阶段,列车的动能 ()A.与它所经历的时间成正比B.与它的位移成正比C.与它的速度成正比D.与它的动量成正比答案B本题考查匀变速直线运动规律、动能及动量。设列车运动时间为t,由匀变速直线运动规律v=at、s= at2,结合动能公式Ek= 得Ek= 、Ek=mas,可知Ek∝v2、Ek∝t2、Ek∝s,故A、C项均错误,B项正确。由Ek= ,得Ek∝p2,故D项错误。1222mv222mat22pm4.[2016课标Ⅰ,35(2),10分]某游乐园入口旁有一喷泉,喷出的水柱将一质量为M的卡通玩具稳定地悬停在空中。为计算方便起见,假设水柱从横截面积为S的喷口持续以速度v0竖直向上喷出;玩具底部为平板(面积略大于S);水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开。忽略空气阻力。已知水的密度为ρ,重力加速度大小为g。求(ⅰ)喷泉单位时间内喷出的水的质量;(ⅱ)玩具在空中悬停时,其底面相对于喷口的高度。答案(ⅰ)ρv0S(ⅱ) - 解析(ⅰ)设Δt时间内,从喷口喷出的水的体积为ΔV,质量为Δm,则Δm=ρΔV ①ΔV=v0SΔt ②由①②式得,单位时间内从喷口喷出的水的质量为 =ρv0S ③(ⅱ)设玩具悬停时其底面相对于喷口的高度为h,水从喷口喷出后到达玩具底面时的速度大小为v。对于Δt时间内喷出的水,由能量守恒得 (Δm)v2+(Δm)gh= (Δm)  ④在h高度处,Δt时间内喷射到玩具底面的水沿竖直方向的动量变化量的大小为Δp=(Δm)v ⑤设水对玩具的作用力的大小为F,根据动量定理有FΔt=Δp ⑥202vg222202MgρvSmt121220v由于玩具在空中悬停,由力的平衡条件得F=Mg ⑦联立③④⑤⑥⑦式得h= -  ⑧考查点动量定理、能量守恒定律、物体平衡解题关键在流体中运用动量知识时一定要取Δt时间内的流体为研究对象。202vg222202MgρvS5.(2017课标Ⅰ,14,6分)将质量为1.00kg的模型火箭点火升空,50g燃烧的燃气以大小为600m/s的速度从火箭喷口在很短时间内喷出。在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略) ()A.30kg·m/sB.5.7×102kg·m/sC.6.0×102kg·m/sD.6.3×102kg·m/s考点二动量守恒定律及其应用答案A本题考查动量守恒定律。由于喷出过程中重力和空气阻力可忽略,则模型火箭与燃气组成的系统动量守恒。燃气喷出前系统静止,总动量为零,故喷出后瞬间火箭的动量与喷出燃气的动量等值反向,可得火箭的动量大小等于燃气的动量大小,则|p火|=|p气|=m气v气=0.05kg×600m/s=30kg·m/s,A正确。易错点拨系统中量与物的对应性动量守恒定律的应用中,系统内物体至少为两个,计算各自的动量时,需注意速度与质量对应于同一物体。6.(2019课标Ⅰ,25,20分)竖直面内一倾斜轨道与一足够长的水平轨道通过一小段光滑圆弧平滑连接,小物块B静止于水平轨道的最左端,如图(a)所示。t=0时刻,小物块A在倾斜轨道上从静止开始下滑,一段时间后与B发生弹性碰撞(碰撞时间极短);当A返回到倾斜轨道上的P点(图中未标出)时,速度减为0,此时对其施加一外力,使其在倾斜轨道上保持静止。物块A运动的v-t图像如图(b)所示,图中的v1和t1均为未知量。已知A的质量为m,初始时A与B的高度差为H,重力加速度大小为g,不计空气阻力。 图(a) 图(b)(1)求物块B的质量;(2)在图(b)所描述的整个运动过程中,求物块A克服摩擦力所做的功;(3)已知两物块与轨道间的动摩擦因数均相等。在物块B停止运动后,改变物块与轨道间的动摩擦因数,然后将A从P点释放,一段时间后A刚好能与B再次碰上。求改变前后动摩擦因数的比值。答案(1)3m(2) mgH(3) 解析本题通过两物块在粗糙轨道上的滑行与碰撞考查了动量守恒定律、能量守恒定律等相关规律,考查了考生综合分析能力及应用数学知识处理物理问题的能力,体现了模型建构、科学推理等核心素养要素。(1)根据图(b),v1为物块A在碰撞前瞬间速度的大小, 为其碰撞后瞬间速度的大小。设物块B的质量为m',碰撞后瞬间的速度大小为v'。由动量守恒定律和机械能守恒定律有mv1=m +m'v' ① m = m + m'v'2 ②联立①②式得m'=3m ③(2)在图(b)所描述的运动中,设物块A与轨道间的滑动摩擦力大小为f,下滑过程中所走过的路程为s1,返回过程中所走过的路程为s2,P点的高度为h,整个过程中克服摩擦力所做的功为W。由动能定理有21511912v12v1221v122112v12mgH-fs1= m -0 ④-(fs2+mgh)=0- m  ⑤从图(b)所给出的v-t图线可知s1= v1t1 ⑥s2= · ·(1.4t1-t1) ⑦由几何关系可得 =  ⑧物块A在整个过程中克服摩擦力所做的功为W=fs1+fs2 ⑨联立④⑤⑥⑦⑧⑨式可得W= mgH ⑩(3)设倾斜轨道倾角为θ,物块与轨道间的动摩擦因数在改变前为μ,有1221v12212v121212v21sshH215W=μmgcosθ·   设物块B在水平轨道上能够滑行的距离为s',由动能定理有-μm'gs'=0- m'v'2  设改变后的动摩擦因数为μ',由动能定理有mgh-μ'mgcosθ· -μ'mgs'=0  联立①③④⑤⑥⑦⑧⑩   式可得 =   解法指导(1)在时间短暂的弹性碰撞中,利用动量守恒、能量守恒列式求解;(2)涉及距离的问题中,通常利用动能定理列式可简便求解力、功等相关物理量。sinHhθ12sinhθ'μμ1197.(2019课标Ⅲ,25,20分)静止在水平地面上的两小物块A、B,质量分别为mA=1.0kg,mB=4.0kg;两者之间有一被压缩的微型弹簧,A与其右侧的竖直墙壁距离l=1.0m,如图所示。某时刻,将压缩的微型弹簧释放,使A、B瞬间分离,两物块获得的动能之和为Ek=10.0J。释放后,A沿着与墙壁垂直的方向向右运动。A、B与地面之间的动摩擦因数均为μ=0.20。重力加速度取g=10m/s2。A、B运动过程中所涉及的碰撞均为弹性碰撞且碰撞时间极短。(1)求弹簧释放后瞬间A、B速度的大小;(2)物块A、B中的哪一个先停止?该物块刚停止时A与B之间的距离是多少?(3)A和B都停止后,A与B之间的距离是多少? 答案(1)4.0m/s1.0m/s(2)B先停0.50m(3)0.91m解析本题考查动量守恒定律、牛顿第二定律、动能定理和机械能守恒定律的综合应用,要求考生具有较强的推理能力和综合分析能力。题目中涉及两个物体,运动过程较多,涉及规律较多,综合性很强,为较难题。体现了模型建构、科学推理的素养要求。(1)设弹簧释放瞬间A和B的速度大小分别为vA、vB,以向右为正,由动量守恒定律和题给条件有0=mAvA-mBvB ①Ek= mA + mB  ②联立①②式并代入题给数据得vA=4.0m/s,vB=1.0m/s③(2)A、B两物块与地面间的动摩擦因数相等,因而两者滑动时加速度大小相等,设为a。假设A和B发生碰撞前,已经有一个物块停止,此物块应为弹簧释放后速度较小的B。设从弹簧释放到B停止所需时间为t,B向左运动的路程为sB,则有mBa=μmBg ④122Av122BvsB=vBt- at2 ⑤vB-at=0 ⑥在时间t内,A可能与墙发生弹性碰撞,碰撞后A将向左运动,碰撞并不改变A的速度大小,所以无论此碰撞是否发生,A在时间t内的路程sA都可表示为sA=vAt- at2 ⑦联立③④⑤⑥⑦式并代入题给数据得sA=1.75m,sB=0.25m⑧sAl且sA-sB2l,这表明在时间t内A已与墙壁发生碰撞,但没有与B发生碰撞,此时A位于出发点右边0.25m处。B位于出发点左边0.25m处,两物块之间的距离s为s=0.25m+0.25m=0.50m⑨(3)t时刻后A将继续向左运动,假设它能与静止的B碰撞,碰撞时速度的大小为vA',由动能定理有 mAvA'2- mA =-μmAg(2l+sB)  联立③⑧ 式并代入题给数据得vA'= m/s 121212122Av7故A与B将发生碰撞。设碰撞后A、B的速度分别为vA″和vB″,由动量守恒定律与机械能守恒定律有mA(-vA')=mAvA″+mBvB″   mAvA'2= mAvA″2+ mBvB″2  联立   式并代入题给数据得vA″= m/s,vB″=- m/s 这表明碰撞后A将向右运动,B继续向左运动。设碰撞后A向右运动距离为sA'时停止,B向左运动距离为sB'时停止,由运动学公式2asA'=vA″2,2asB'=vB″2  根据④  式及题给数据得sA'=0.63m,sB'=0.28m sA'小于碰撞处到墙壁的距离。由上式可得两物块停止后的距离s'=sA'+sB'=0.91m 121212375275解题思路(1)由动量守恒定律和动能定理计算式联立即可。(2)利用牛顿第二定律求A、B的加速度,分别对A、B的运动过程应用匀变速直线运动公式解决问题。(3)假设A能与B碰撞,应用动能定理求出A碰撞前的瞬时速度;发生弹性碰撞,则由动量守恒定律和机械能守恒定律联立解出碰后A、B的速度,问题便易于解决了。8.(2018课标Ⅱ,24,12分)汽车A在水平冰雪路面上行驶。驾驶员发现其正前方停有汽车B,立即采取制动措施,但仍然撞上了汽车B。两车碰撞时和两车都完全停止后的位置如图所示,碰撞后B车向前滑动了4.5m,A车向前滑动了2.0m。已知A和B的质量分别为2.0×103kg和1.5×103kg,两车与该冰雪路面间的动摩擦因数均为0.10,两车碰撞时间极短,在碰撞后车轮均没有滚动,重力加速度大小g=10m/s2。求(1)碰撞后的瞬间B车速度的大小;(2)碰撞前的瞬间A车速度的大小。 答案(1)3.0m/s(2)4.3m/s解析本题考查牛顿第二定律和动量守恒定律等知识。(1)设B车的质量为mB,碰后加速度大小为aB,根据牛顿第二定律有μmBg=mBaB ①式中μ是汽车与路面间的动摩擦因数。设碰撞后瞬间B车速度的大小为vB',碰撞后滑行的距离为sB

1 / 137
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功