方法-累加法与累乘法

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

方法1:累加法与累乘法1方法1:累加法与累乘法A组1.☆[累加法]设数列{an}中,a₁=2,an+1=an+n+2,则通项an=.解析:由已知得an+1-an=n+2,于是有an-a₁=(an-an-1)+(an-1-an-2)+(an-2-an-3)+……+(a₂-a₁)=(n+1)+n+(n-1)+……+3=(n+1)+32×(n-1)=n²+3n-42,∴an=a₁+n²+3n-42=n²+3n2=n(n+3)2(n≥2).经检验当n=1时也符合该式.∴an=n(n+3)2.2.◇设数列{an}中,a₁=3,an=an-1+2n,则通项an=.解析:由已知得an-an-1=2n,于是有an-a₁=(an-an-1)+(an-1-an-2)+(an-2-an-3)+……+(a₂-a₁)=2n+2(n-1)+2(n-2)+……+2×2=2n+42×(n-1)=(n+2)(n-1).∴an=a₁+(n+2)(n-1)=3+(n+2)(n-1)=n²+n+1(n≥2).经检验当n=1时也符合该式.∴an=n²+n+1.3.◇(2010辽宁卷T16)已知数列{an}满足a₁=33,an+1-an=2n,则ann的最小值为.解析:a₂-a₁=2,a₃-a₂=4,a4-a₃=6,…,an-an-1=2(n-1),以上各式左右两边分别相加,得an-a₁=2+4+6+…+2(n-1)=n(n-1),∴an=a₁+n(n-1)=33+n(n-1),则ann=33n+n-1,/*若x>0,x∈R,由基本不等式可得33x+x≥233,当且仅当x=33时取得最小值.最接近33的两个整数是5和6.*/当n=5时,ann=335+4=535;当n=6时,ann=336+5=212<535,所以ann的最小值为212.4.◇(2011四川卷T8)数列{an}的首项为3,{bn}为等差数列且bn=an+1-an(n∈N*).若b₃=-2,b10=12,则a8=.解析:设{bn}的公差为d,则d=b10-b₃10-3=2,∴bn=b₃+(n-3)d=2(n-4),即an+1-an=2(n-4).则a₂-a₁=-6,a₃-a₂=-4,a4-a₃=-2,…,an-an-1=2(n-5),累加得到an-a₁=(-6)+(-4)+(-2)+…+2(n-5)=(n-8)(n-1),故an=3+(n-8)(n-1),a8=3.方法1:累加法与累乘法25.◇(2015江苏卷T11)[累加法&裂项相消法]设数列{an}满足a₁=1,且an+1-an=n+1(n∈N*),则数列{1an}前10项的和为.解析:由a₁=1,且an+1-an=n+1(n∈N*)得,an=a₁+(a₂-a₁)+(a₃-a₂)+…+(an-an-1)=1+2+3+…+n=n(n+1)2,则1an=2n(n+1)=2(1n-1n+1),故数列{1an}前10项的和为S10=2(1-12+12-13+…+110-111)=2(1-111)=2011.6.◇数列{an}满足a₁=1,且对任意的m,n∈N*,都有am+n=am+an+mn,则1a₁+1a₂+1a₃+…+1a2012=.解析:令m=1,则有an+1=a₁+an+n,即an+1-an=n+1,所以a₂-a₁=2,a₃-a₂=3,a4-a₃=4,……,an-an-1=n,累加得到an-a₁=2+3+4+…+n=(n+2)(n-1)2,故an=a₁+(n+2)(n-1)2=n(n+1)2,∴1an=2n(n+1)=2(1n-1n+1),∴1a₁+1a₂+1a₃+…+1a2012=2(1-12+12-13+…+12012-12013)=40242013.7.◇已知数列{an}中,a₁=p,a₂=q,且an+2-2an+1+an=d,求数列{an}的通项公式.解析:原式可化为(an+2-an+1)-(an+1-an)=d.令bn=an+1-an,则bn+1-bn=d,所以数列{bn}是以b₁=a₂-a₁=q-p为首项,以d为公差的等差数列.∴bn=b₁+(n-1)d=q-p+(n-1)d.即an+1-an=q-p+(n-1)d.于是有an-a₁=(an-an-1)+(an-1-an-2)+(an-2-an-3)+……+(a₂-a₁)=[q-p+(n-2)d]+[q-p+(n-3)d]+[q-p+(n-4)d]+……[q-p+0d]=(n-1)(q-p)+n-22×(n-1)d=(n-1)(q-p+n-22d),∴an=a₁+(n-1)(q-p+n-22d)=p+(n-1)(q-p+n-22d)(n≥2).经检验当n=1时也符合该式.∴an=p+(n-1)(q-p+n-22d).8.☆[累乘法]已知数列{an}中,a₁=2,满足an+1=n+2nan,求数列{an}的通项公式.解析:原式可化为an+1an=n+2n,于是有ana₁=anan-1×an-1an-2×an-2an-3×…×a₂a₁=n+1n-1×nn-2×n-1n-3×n-2n-4×…×53×42×31方法1:累加法与累乘法3=(n+1)n2×1=(n+1)n2,∴an=a₁×(n+1)n2=n(n+1).9.◇已知数列{an}中,a₁=5,满足an=(1+1n)an-1,求数列{an}的通项公式.解析:原式可化为anan-1=1+1n=n+1n,于是有ana₁=anan-1×an-1an-2×an-2an-3×…×a₂a₁=n+1n×nn-1×n-1n-2×…×43×32=n+12.∴an=a₁×n+12=52(n+1).10.◇已知数列{an}中,a₁=13,满足an+1=(13+23n)an,求数列{an}的通项公式.解析:原式可化为an+1an=n+23n=13×n+2n,于是有ana₁=anan-1×an-1an-2×an-2an-3×…×a₂a₁=(13)n-1×n+1n-1×nn-2×n-1n-3×n-2n-4×…×53×42×31=13n-1×(n+1)n2×1=13n-1×(n+1)n2.∴an=a₁×13n-1×(n+1)n2=13n×(n+1)n2=(n+1)n2×3n.11.◇在数列{an}与{bn}中,a₁=1,b₁=4,数列{an}的前n项和Sn满足nSn+1-(n+3)Sn=0,2an+1为bn与bn+1的等比中项,n∈N*.⑴求a₂,b₂的值;⑵求数列{an}与{bn}的通项公式.解析:⑴令n=1可得S₂=4S₁=4,∴a₂=S₂-a₁=3./*令n=2可得2S₃=5S₂=20,∴S₃=10,a₃=S₃-S₂=6.*/∵2a₂为b₁与b₂的等比中项,∴b₂=(2a₂)²b₁=9.⑵由原式可得nSn+1=(n+3)Sn,∴Sn+1Sn=n+3n.于是有SnS₁=SnSn-1×Sn-1Sn-2×Sn-2Sn-3×…×S4S₃×S₃S₂×S₂S₁=n+2n-1×n+1n-2×nn-3×n-1n-4×…×63×52×41=(n+2)(n+1)n3×2×1=(n+2)(n+1)n6.∴Sn=S₁×(n+2)(n+1)n6=(n+2)(n+1)n6.于是有Sn-1=(n+1)n(n-1)6,则当n≥2时,an=Sn-Sn-1=(n+2)(n+1)n6-(n+1)n(n-1)6=(n+1)n2.方法1:累加法与累乘法4经检验当n=1时也符合上式,∴an=(n+1)n2.由已知bn·bn+1=(2an+1)²=[(n+1)(n+2)]²,①则bn+1·bn+2=[(n+2)(n+3)]²,②两式相除得bn+2bn=(n+3n+1)²,于是有b₃b₁=(42)²,b5b₃=(64)²,b7b5=(86)²,……,b2n+1b2n-1=(2n+22n)².以上各式连乘可得:b2n+1b₁=(n+1)²,∴b2n+1=b₁×(n+1)²=(2n+2)²=[(2n+1)+1]².再由①式可得:b2n=[(2n+1)(2n+2)]²b2n+1=[(2n+1)(2n+2)]²(2n+2)²=(2n+1)².综上,恒有bn=(n+1)².B组12.◇[累加法&错位相减法]在数列{an}中,a₁=1,an+1=(1+1n)an+n+12n.求数列{an}的通项公式及前n项和Sn.解析:an+1=n+1nan+n+12n,等式两边同除以n+1,得:an+1n+1=ann+12n,即an+1n+1-ann=12n.于是有a₂2-a₁1=12,a₃3-a₂2=12²,a44-a₃3=12³,……,ann-an-1n-1=12n-1,以上各式相加,得ann-a₁1=12+12²+12³+……12n-1=1-(12)n-1=1-12n-1.∴ann=a₁1+1-12n-1=2-12n-1,∴an=2n-n2n-1.则Sn=2(1+2+3+……n)-(12º+22¹+32²+42³+……+n2n-1)=n(n+1)-(12º+22¹+32²+42³+……+n2n-1).令Tn=12º+22¹+32²+42³+……+n2n-1①,则12Tn=12¹+22²+32³+424+……+n2n②,①-②,得12Tn=1+12+12²+12³+……+12n-1-n2n=2(1-12n)-n2n=2-2+n2n,∴Tn=4-2+n2n-1.∴Sn=n(n+1)-(4-2+n2n-1)=n(n+1)-4+2+n2n-1.C组13.◇对于数列{an},定义{Δan}为数列{an}的一阶差分数列,其中Δan=an+1-an(n∈N*).对于正整数k,规定{Δkan}为数列{an}的k阶差分数列,其中Δkan=Δ(Δk-1an)=Δk-1an+1-Δk-1an.若数列{Δ²an}的各项均为2,且满足a11=a2015=0,则a₁的值为.方法1:累加法与累乘法5解析:因为数列{Δ²an}的各项均为2,即Δan+1-Δan=2,所以Δan=Δa₁+2n-2,/*{Δan}为等差数列.*/即an+1-an=Δa₁+2n-2,所以an-a₁=(an-an-1)+(an-1-an-2)+…+(a₂-a₁)=(n-1)Δa₁+(2+4+6+…+2n-4)=(n-1)Δa₁+(n-1)(n-2),所以a11-a₁=10Δa₁+10×9a2015-a₁=2014Δa₁+2014×2013,即0-a₁=10Δa₁+10×90-a₁=2014Δa₁+2014×2013,解得a₁=20140.

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功