§6.4数列的递推关系与通项第六章数列KAOQINGKAOXIANGFENXI考情考向分析由数列的递推关系求通项是高考的热点,考查学生的转化能力和综合应用能力,一般以解答题形式出现,中档难度.NEIRONGSUOYIN内容索引基础知识自主学习题型分类深度剖析课时作业1基础知识自主学习PARTONE知识梳理1.递推数列(1)概念:数列的连续若干项满足的等量关系an+k=f(an+k-1,an+k-2,…,an)称为数列的递推关系.由递推关系及k个初始值确定的数列叫递推数列.(2)求递推数列通项公式的常用方法:构造法、累加(乘)法、归纳猜想法.ZHISHISHULI2.数列递推关系的几种常见类型(1)形如an-an-1=f(n)(n∈N*,且n≥2)方法:累加法,即当n∈N*,n≥2时,an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1.(2)形如anan-1=f(n)(n∈N*且n≥2)方法:累乘法,即当n∈N*,n≥2时,an=anan-1·an-1an-2·…·a2a1·a1.注意:n=1不一定满足上述形式,所以需要检验.(3)形如an=pan-1+q(n∈N*且n≥2)方法:化为an+qp-1=pan-1+qp-1的形式.令bn=an+qp-1,即得bn=pbn-1,{bn}为等比数列,从而求得数列{an}的通项公式.(4)形如an=pan-1+f(n)(n∈N*且n≥2)方法:两边同除pn,得anpn=an-1pn-1+fnpn,令bn=anpn,得bn=bn-1+fnpn,转化为利用累加法求bn若fnpn为常数,则{bn}为等差数列,从而求得数列{an}的通项公式.【概念方法微思考】用构造法求数列通项一般构造什么样的数列?这体现了何种数学思想方法?提示构造等差或等比数列,体现了转化与化归思想.基础自测JICHUZICE题组一思考辨析123456(1)在数列{an}中,a1=1,an=n-1nan-1(n≥2),则an=1n.()(2)在数列{an}中,a1=2,an+1=an+3n+2,则an=32n2+n2.()(3)已知在数列{an}中,a1=1,前n项和Sn=n+23an,则an=nn+12.()1.判断下列结论是否正确(请在括号中打“√”或“×”)(4)已知数列{an}的前n项和为Sn,且满足log2(Sn+1)=n+1,则an=2n.()×√√√题组二教材改编1234562.[P52公式推导过程]在数列{an}中,已知a1=1,an+1an=nn+1,那么an=____.1n1234563.[P41T13]若数列{an}满足a1=1,an=n+an-1(n≥2,n∈N*),则数列{an}的通项公式为___________.an=nn+121234564.[P68T14]在数列{an}中,a1=1,an+1=an1+nan,则an=_________.2n2-n+21234565.在斐波那契数列1,1,2,3,5,8,13,…中,an,an+1,an+2的关系是_______________.题组三易错自纠an+2=an+an+1所以an+1+1an+1=3,6.已知数列{an}满足a1=1,an+1=3an+2,则an=____________.1234562×3n-1-1解析因为an+1=3an+2,所以an+1+1=3(an+1),所以数列{an+1}为等比数列,公比q=3,又a1+1=2,所以an+1=2×3n-1,所以an=2×3n-1-1.2题型分类深度剖析PARTTWO1.已知在数列中,a1=0,an+1=an+2n-1,求an.解由已知得an-an-1=2n-3,当n≥2时,an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=(2n-3)+(2n-5)+…+1+0=(n-1)2.当n=1时,a1=0符合上式,所以an=(n-1)2,n∈N*.题型一累加法、累乘法求数列的通项公式自主演练an2.数列an满足a1=12,an=an-1+1n2-n(n≥2,n∈N*),求数列an的通项.解由an-an-1=1n2-n(n≥2,n∈N*)且a1=12,an-an-1=1n2-n=1n-1-1nan-1-an-2=1n-2-1n-1,…,a2-a1=1-12,各式累加整理得an=32-1n,n取1时,32-1=12=a1,所以an=32-1n(n∈N*).3.已知在数列an中,a1=2,且nan+1=(n+2)an,求an.当n=1时,a1=2也符合上式,所以an=n(n+1)(n∈N*).解由已知得an+1an=n+2n,当n≥2时,an=anan-1·an-1an-2·…·a2a1·a1=n+1n-1·nn-2·…·31·2=n(n+1),思维升华(1)求形如an+1=an+f(n)数列的通项公式,此类题型一般可以利用累加法求其通项公式,即an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1,累加求得通项公式;(2)求形如an+1an=f(n)数列的通项,此类题型一般可以利用累乘法求其通项公式,即an=anan-1·an-1an-2·…·a2a1·a1,累乘求得其通项.题型二构造等差数列求通项师生共研例1(1)已知在正项数列{an}中,Sn表示前n项和且2=an+1,则an=_______.Sn2n-1解析在递推关系an+1=2an+3·2n的两边同除以2n+1,得an+12n+1=an2n+32,令bn+1=an+12n+1,则bn+1=bn+32,b1=1,所以{bn}是以1为首项,32为公差的等差数列.所以bn=1+32(n-1)=32n-12,故an=2n·32n-12,n∈N*.(2)已知在数列中,a1=2,an+1=2an+3·2n,则an=_________________.an2n·32n-12,n∈N*思维升华(1)形如an+1=pan+q·bn的递推关系可构造等差数列.(2)对于含an,Sn混合型的递推关系,可通过an=a1,n=1,Sn-Sn-1,n≥2消去an或Sn.跟踪训练1(1)在数列{an}中,已知a1=1,an+1=2anan+2,则an=______________.解析由已知可知an≠0,2n+1,n∈N*∴1an+1=1an+12,即1an+1-1an=12,又1a1=1,∴1an是以1为首项,12为公差的等差数列,1an=1a1+(n-1)×12=n+12,∴an=2n+1,n∈N*.(2)已知在数列an中,a1=15,且当n≥2时,有an-1-an-4anan-1=0,则an=____________.解析由题意知an≠0,将等式an-1-an-4anan-1=0两边同除以anan-1得1an-1an-1=4,n≥2,则数列1an为等差数列,且首项为1a1=5,公差d=4,故1an=1a1+(n-1)d=5+4(n-1)=4n+1,∴an=14n+1(n∈N*).14n+1(n∈N*)题型三构造等比数列求通项公式师生共研例2(1)已知数列{an}满足a1=2,an+1=2an+2,求数列{an}的通项公式.解∵an+1=2an+2,∴an+1+2=2(an+2),又a1+2=4,∴{an+2}是以4为首项,2为公比的等比数列,∴an+2=4·2n-1,∴an=2n+1-2(n∈N*).(2)已知数列{an}中,a1=1,an·an+1=12n,记T2n为{an}的前2n项的和,bn=a2n+a2n-1,n∈N*,求数列{bn}的通项公式.思维升华形如an=pan-1+q(pq≠0)型的递推关系,可构造等比数列求通项公式.跟踪训练2(1)已知数列an满足an=13an-1+2,a1=1,求数列an的通项公式.解设an+λ=13(an-1+λ),解得λ=-3,则an-3=13(an-1-3),令bn=an-3,则数列bn是以b1=a1-3=-2为首项,13为公比的等比数列,所以bn=-23n-1,所以an=3-23n-1(n∈N*).解由已知可得a2n+1n+1=4·a2nn,(2)(2018·苏州、无锡、常州、镇江调研)已知n为正整数,数列{an}满足an0,4(n+1)-n=0,若a1=2,求an.a2na2n+1∵an0∴an+1n+1=2·ann,,又a1=2,∴ann是以a1=2为首项,2为公比的等比数列,∴ann=2n,∴an=n·2n(n∈N*).3课时作业PARTTHREE1.已知a1=3,an+1=3n-13n+2an(n≥1,n∈N*),则an=_______.解析当n≥2时,基础保分练12345678910111213141516an=3n-1-13n-1+2·3n-2-13n-2+2·…·3×2-13×2+2·3-13+2a1=3n-43n-1·3n-73n-4·…·58·25·3=63n-1.a1=3也符合上式,所以an=63n-1.63n-1123456789101112131415162.已知在数列an中,a1=12,an+1=an+14n2-1,则an=____________.4n-34n-2(n∈N*)123456789101112131415163.在数列{an}中,若a1=2,an+1=an+ln1+1n,则an=_____________.2+lnn(n∈N*)解析由a1=S1=(a1+1)(a1+2),解得a1=1或a1=2.由已知a1=S11,得a1=2.又由an+1=Sn+1-Sn12345678910111213141516=16(an+1+1)(an+1+2)-16(an+1)(an+2),4.已知各项均为正数的数列{an}的前n项和满足Sn1,且6Sn=(an+1)(an+2),n∈N*,则数列{an}的通项公式为__________.16得an+1-an-3=0或an+1=-an.因为an0,故an+1=-an不成立,舍去.因此an+1-an-3=0,即an+1-an=3,从而{an}是公差为3,首项为2的等差数列,故{an}的通项公式为an=3n-1.an=3n-1123456789101112131415165.已知在数列an中,a1=56,an+1=13an+12n+1,则an=_____________.解析在an+1=13an+12n+1的两边同乘以2n+1得2n+1·an+1=23·(2nan)+1,令bn=2nan.则b1=53,bn+1=23bn+1,于是可得bn+1-3=23(bn-3),∴bn-3=-43×23n-1=-223n,∴bn=3-223n,∴an=bn2n=312n-213n=32n-23n(n∈N*).32n-23n(n∈N*)123456789101112131415166.(2018·江苏省南通市启东中学月考)设数列{an}的前n项和为Sn,且满足Sn=2an-2,则a8a6=___.解析∵Sn=2an-2,∴a1=2a1-2,解得a1=2,an=Sn-Sn-1=(2an-2)-(2an-1-2),n≥2,整理,得anan-1=2,∴{an}是首项为2,公比为2的等比数列,∴a8a6=2826=4.4123456789101112131415167.设数列an满足a1=a,an+1=can+1-c,c∈N*,其中a,c为实数,且c≠0,