精编WORD文档下载可编缉打印下载文档,远离加班熬夜大学数学习题一答案篇一:大学数学课后习题答案习题11.(1)不能(2)不能(3)能(4)不能2.(1)不正确;因为“年轻人”没有明确的标准,不具有确定性,不能作为元素来组成集合.(2)不正确;对于一个给定的集合,它的元素必须是互异的,即集合中的任何两个元素都是不同的,故这个集合是由3个元素组成的.(3)正确;集合中的元素相同,只是次序不同,它们都表示同一个集合.3.?,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.4.(1){0,1,2,3,4}(2){3,4}(3){(?1,?1),(0,0),(1,1)}5.(1){x|x?2?3,x?Z}(2){x|x?x?12?0}(3){(x,y)|y?x,y?x}6.(1){1,3}(2){1,2,3,5}(3)?(4){1,2,3,4,5,6}(5){2}(6)?(7){4,5,6}(8){1,3,4,5,6}(9){1,2,3,4,5,6}(10){4,6}7.23A?A?B?B?A?(A?B)?B精编WORD文档下载可编缉打印下载文档,远离加班熬夜?((A?A)?(A?B))?B?(??(A?B))?B?(A?B)?B?(A?B)?(B?B)?(A?B)?U?A?B8.(1)(?5,5)(2)(?2,0)(3)(??,?3]?[1,??)(4)(1,2](5)[4,??)(6)(??,4)9.(1)A?B?{1};A?B?[0,3];A?B?[0,1).(2)A?B?[2,4];A?B?[?1,4];A?B?[?1,2).10.(1)(,)(2)(,2)?(2,).11.(1)不是.定义域不同(2)不是.定义域不同(3)不是.定义域不同(4)是.在公共的定义域[?1,1]上,y??x??x?y??x212.(1)(??,?2)?(?2,2)?(2,??)(2)(??,?1]?[1,??)(3)(?1,1]35223252(4)(??,??)(5)(?2,2)(6)[1,5](7)(?2?2k?,?2?2(k?1)?),k?0,?1,?2,?(8)(?2,?1)?(?1,1)?(1,??)(9)(??,?2)?(3,??)(10)[2,4]精编WORD文档下载可编缉打印下载文档,远离加班熬夜13(1)f(0)?02?3?0?5??5;f(1)?12?3?1?5??1;f(?1)?(?1)2?3?(?1)?5??7;f(?x)?(?x)2?3?(?x)?5?x2?3x?5;f()?()?3?1x1x2113?5?2??5.xxx14.f(x)?f(x?1?1)?(x?1)2?2(x?1)?3?x2?4;f(x?1)?(x?1)2?4?x2?2x?3.sin(?)??2,f(0)?0?1?1,f(?)???1??.15.f(?)?2222??2?x2x2x2?116.?x?D?(??,??),有f(x)?1???1??1??2.2221?x1?x1?x17.(1)单调递减(2)(??,2]上单调递增;[2,??)上单调递减(3)(??,1]单调递减;[1,??)上单调递增(4)单调递增(5)(??2?k?,?2?k?)(k?0,?1,?2,?)上单调递增;(6)单调递增18.(1)偶函数(2)非奇非偶函数(3)偶函数(4)奇函数(5)非奇非偶函数(6)偶函数(7)非奇非偶函数(8)奇函数(9)偶函数(10)奇函数19.(1)对定义域内的任意x,因为F(?x)?函数;(2)对定义域内的任意x,因G(?x)?精编WORD文档下载可编缉打印下载文档,远离加班熬夜所以G(x)是偶函数.20.(1)?(2)2?(3)?(4)2?21.(1)因为?x?(??,??),有f(x?2)?f(x)?f(2)成立,令x??1,则有1[f(?x)?f(x)]?F(x),所以F(x)是偶211[f(?x)?f(x)]??[f(x)?f(?x)]??G(x),22f(1)?f(?1)?f(2),又因为f(x)是(??,??)内的奇函数,所以f(?1)??f(1),所以f(2)?2f(1)?2a,又f(5)?f(3)?f(2)?(f(1)?f(2))?f(2)?f(1)?2f(2),所以f(5)?5a.(2)因为f(x)是以2为周期的周期函数,所以f(x?2)?f(x),又已知f(x?2)?f(x)?f(2),所以f(2)?0,由(1)知f(2)?2a,所以a?0.222.(1)y?arcsinu,u?1?x(2)y?,u?lnv,v?xw,2(3)y?u,u?2?v,v?cosx(4)y?eu,u?arctanv,v?w?1?x23.(1)y?1?x1bx?(2)y?ex?1(3)y?x?2(4)y?(x??1)1?xkk24.(1)是(2)是(3)是(4)不是习题21.(1)0(2)1(3)0(4)02.(1)3(2)2(3)0(4)??(5)?精编WORD文档下载可编缉打印下载文档,远离加班熬夜3.两个无穷小的商是不一定是无穷小,例如:1limn??nn21???n2limnn??4.根据定义证明:1(1)y?xcos当x?0时为无穷小;x证明:???0,????,当x??,xcos(2)y?1?x当x??1时为无穷大.x1?x??x证明:?M?0,???M?1,当x??,5.求下列极限:(1)1(2)06.计算下列极限:(1)0(2)12x?111????1?M?1?1?Mxxx(3)2(4)127.计算下列极限:(1)4(2)?1(3)2(4)31(5)?(6)4(7)-1(8)?x?1,x?0?x?0,讨论函数在点x?0时的极限情况?8.设f(x)??0,?x?1,x?0?解:lim-f(x)??1,lim-f(x)?1,f(0)?0,所以f(x)在x?0不存在极限。x?0x?0x2?ax?b?5,求a,b9.已知limx?11?x精编WORD文档下载可编缉打印下载文档,远离加班熬夜x2?ax?b?5得解:由已知可知:a?b?1?0,得到a??b?1,代入limx?11?xx2?(b?1)x?b(x?b)(x?1)lim?lim?1?b?5,得b?6,a??7x?1x?11?x1?x10.计算下列极限:lim?x?cosx?lim?x?0x12x2(1)x?0?2tanx?sinx1?cosxx21?lim?lim?(2)limx?0x?0x2?cosxx?02x2?cosx2x3tan2x22x2?lim2?2(3)lim2x?0x?0xx(4)limx?02??cosx1?cosxsinx2?lim?lim?x?08sin2x(2??cosx)sin2xx?022?2sinxcosxxx?1?11??x?2??(5)lim??lim1????x??x?1x?????x?1??e1?x?(6)lim???x??x?1e??1??3?x??(7)lim???lim?1??x??2?xx??x?2?????(8)lim?1?x?0?x??2?x?1xxx?(x?2)?21?e?e?12?x2???e(9)lim?x???x2?1???x(10)limsinx?sin1cosx?lim?cos1x?1x?1x?111?cosxx2?lim?0(11)limx?0x?02sinxsinxlim(1?x)tan?x精编WORD文档下载可编缉打印下载文档,远离加班熬夜2(12)x?1?lim(1?x)x?1?12?lim?xx?1x?cos?sin222sin?xsin3x?2sinx3?(13)lim2?54?sinxx?2(14)limx?cotxx??22??1111????存在极限。1?21?221?2n111111?????????提示:2n2n1?21?2221?2211.证明:数列xn?11??112.求极限limn?2?2???2?。n??n??n?2?n?n???提示:n?n11?n?n?1?n??????2?2222n??n?n??n?n??n??n?2?2n13.求lim。n??n!2n2?提示:n足够大时n!n篇二:大学数学习题八答案习题八1.判断下列平面点集哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点集和边界:(1){(x,y)|x≠0};(2){(x,y)|1≤x2+y2<4};(3){(x,y)|y<x2};(4){(x,y)|(x-1)2+y2≤1}∪{(x,y)|(x+1)2+y2≤1}.解:(1)开集、无界集,聚点集:R2,边界:{(x,y)|x=0}.(2)既非开集又非闭集,有界集,聚点集:{(x,y)|1≤x2+y2≤4},精编WORD文档下载可编缉打印下载文档,远离加班熬夜边界:{(x,y)|x2+y2=1}∪{(x,y)|x2+y2=4}.(3)开集、区域、无界集,聚点集:{(x,y)|y≤x2},边界:{(x,y)|y=x2}.(4)闭集、有界集,聚点集即是其本身,边界:{(x,y)|(x-1)2+y2=1}∪{(x,y)|(x+1)2+y2=1}.2.已知f(x,y)=x2+y2-xytanxy,试求f(tx,ty).解:f(tx,ty)?(tx)2?(ty)2?tx?tytantx2ty?tf(x,y).3.已知f(u,v,w)?uw?wu?v,试求f(x?y,x?y,xy).解:f(x+y,x-y,xy)=(x+y)xy+(xy)x+y+x-y=(x+y)xy+(xy)2x.4.求下列各函数的定义域:(1)z?ln(y2?2x?1);(2)z?精编WORD文档下载可编缉打印下载文档,远离加班熬夜?(3)z?ln(1?x?y)(4)u?(5)z?(6)z?ln(y?x)?(7)u?arccos解:(1)D?{(x,y)|y2?2x?1?0}.(2)D?{(x,y)|x?y?0,x?y?0}.(3)D?{(x,y)|4x?y?0,1?x?y?0,x?y?0}.22222(4)D?{(x,y,z)|x?0,y?0,z?0}.(5)D?{(x,y)|x?0,y?0,x2?y}.(6)D?{(x,y)|y?x?0,x?0,x2?y2?1}.(7)D?{(x,y,z)|x2?y2精编WORD文档下载可编缉打印下载文档,远离加班熬夜?0,x2?y2?z2?0}.5.求下列各极限:y(1)limln(x?e)x?1y?0(3)limx?0xyy?0(5)limsinxyx?0x;y?0解:(1)原式?ln2.(2)原式=+∞.(3)原式=lim1x?0??y?04.(4)原式=lim精编WORD文档下载可编缉打印下载文档,远离加班熬夜x?0xy?1?1?2.y?0(5)原式=limsinxyx?0xy?y?1?0?0.y?01(x2?y2)22(6)原式=limy2x?0222x?0y?0(x?y)ex?y2?limx?2e(x2精编WORD文档下载可编缉打印下载文档,远离加班熬夜?y2)?0.y?06.判断下列函数在原点O(0,0)处是否连续:?sin(x3?22(1)z??y3)?y2,x?y?0,?x2??0,x2?y2?0;(2)lim1x?0x2?y2;y?0(4)lim精编WORD文档下载可编缉打印下载文档,远离加班熬夜x?0y?022(6)lim1?cos(x?y)x?0(x2?y2.y?0)ex2?y2?sin(x3?y3),?(2)z??x3?y3?0,?x?y?0,x?y?0;333322?xy精编WORD文档下载可编缉打印下载文档,远离加班熬夜,?222(3)(2)z??xy?(x?y)?0,?x?y?0,x?y?0;2222解:(1)由于0?sin(x?y)x?y2233?x?yx?y333322?sin(x?y)x?y33精编WORD文档下载可编缉打印下载文档,远离加班熬夜33?(x?y)sin(x?y)x?y3333又lim(x?y)?0,且limx?0y?0sin(x?y)x?y33x?0y?0?limsinuuu?