4整式的乘法第一章整式的乘除第1课时整式的乘法(一)1.下列计算正确的是()A.(2x3)·(3x)2=6x6B.(-3x4)·(-4x3)=12x7C.(3x4)·(5x3)=8x7D.(-x)·(-2x)3·(-3x)2=-72x62.计算6x·(3-2x)的结果,与下列哪一个式子相同()A.-12x2+18xB.-12x2+3C.16xD.6x课前预习BA3.下列运算正确的是()A.3a2+a=3a3B.2a3·(-a2)=2a5C.4a6+2a2=2a3D.(-3a)2-a2=8a24.计算:2a2·a4=__________.5.计算(-3a2b)·a2b2=__________.D2a6-a4b3课堂讲练新知1单项式与单项式的乘法法则典型例题【例1】计算:(1)(-3xy2)·(2x3y);(2)(-3ab)·(-2a)·(-a2b3).解:(1)原式=-6x1+3y2+1=-6x4y3.(2)原式=(-3)×(-2)×(-1)a1+1+2b1+3=-6a4b4.【例2】计算:(1)a3·(-b3)2+(-2ab2)3;(2)(-4)57×0.2555;(3)-1+(-2)2×50--2;(4)(p-q)4÷(p-q)3·(q-p)5.解:(1)原式=a3·(b6)+(-8a3b6)=a3b6+(-8a3b6)=-7a3b6.(2)原式=(-4×0.25)55×(-4)2=(-1)55×16=-1×16=-16.(3)原式=-4+4×1-4=-4+4-4=-4.(4)原式=-(p-q)4-3+5=-(p-q)6.模拟演练1.填空:(1)3x3·=__________;(2)(2xy2)·=__________;(3)(-5ab2x)·(-a2bx3y)=__________;(4)(-3a3bc)3·(-2ab2)2=_____________;(5)ym-1·3y2m-1=__________;(6)(-5a)·(-2am-1)=__________.x3y3x5a3b3x4y-108a11b7c33y3m-210am2.(1)计算:①a4·a2+2a3·a3-a1·a5;②3x2y·(-2xy3);③(-3xy)·(-x2z)·6xy2z;(2)求未知数x的值:mx·m2x=m9.解:(1)①原式=a6+2a6-a6=2a6;(2)由题意可知,m3x=m9,所以x=3.②原式=-6x3y4;③原式=18x1+2+1y1+2z1+1=18x4y3z2.新知2单项式与多项式相乘的运算法则典型例题【例3】计算:(1)xy2-2xy·xy;(2)(-2a2)·(3ab2-5ab3).(2)原式=(-2a2)·3ab2+(-2a2)·(-5ab3)=-6a3b2+10a3b3.解:(1)原式=xy2·xy+(-2xy)·xy=x2y3-x2y2.模拟演练3.计算:x(x2-x-1)+3(x2+x)-x(3x2+6x).解:原式=x3-x2-x+3x2+3x-x3-2x2=2x.课后作业夯实基础新知1单项式与单项式的乘法法则1.下列运算正确的是()A.6a-5a=1B.(a2)3=a5C.3a2+2a3=5a5D.2a·3a2=6a32.下列运算正确的是()A.4a2-4a2=4aB.(-a3b)2=a6b2C.a+a=a2D.a2·4a4=4a8DB3.计算3a3·(-2a)2的结果是()A.12a5B.-12a5C.12a6D.-12a64.若p=x2y,则-x10y5·(-2x2y)3的计算结果是()A.-8p8B.8p8C.-6p8D.6p8AB新知2单项式与多项式相乘的运算法则5.计算(-3x)·(2x2-5x-1)的结果是()A.-6x2-15x2-3xB.-6x3+15x2+3xC.-6x3+15x2D.-6x3+15x2-16.计算:(2x2)3-6x3(x3+2x2+x)=()A.-12x5-6x4B.2x6+12x5+6x4C.x2-6x-3D.2x6-12x5-6x47.已知ab2=-2,则-ab(a2b5-ab3+b)=()A.4B.2C.0D.14BDD8.一个长方体的长、宽、高分别3a-4,2a,a,它的体积等于()A.3a3-4a2B.a2C.6a3-8a2D.6a2-8a9.若M,N分别表示不同的单项式,且3x(M-5x)=6x2y3+N,则()A.M=2xy3,N=-15xB.M=3xy3,N=-15x2C.M=2xy3,N=-15x2D.M=2xy3,N=15x2CC10.计算x(y-z)-y(z-x)+z(x-y),结果正确的是()A.2xy-2yzB.-2yzC.xy-2yzD.2xy-xzA11.计算:(1)(xy)5÷(-xy)3;(2)(3a2)3+a2·a4-a8÷a2;(3)-3a(2a2-3a-1);(4)(-0.125)2016×82017+(π-2)0.解:(1)原式=-x5y5÷x3y3=-x2y2.(2)原式=27a6+a6-a8÷a2=27a6.(3)原式=-6a3+9a2+3a.(4)原式=(-0.125×8)2016×8+1=9.能力提升12.计算:(1)a2·(-a3)·(-a4);(2)(-5x3)(-2x2)·x4+2x4·(0.25x5);(3)ab(3-b)-2ab-b2·3a2b3.解:(1)原式=a9.(3)原式=[(3ab-ab2)-2ab+ab2]·3a2b3=ab·3a2b3=3a3b4.(2)原式=10x5×x4+2x4×x5=x9+x9=3x9.