一座拱桥的纵截面是抛物线的异端,拱桥的跨度是4.9米,水面宽是4米时,拱顶离水面2米,如图.想了解水面宽度变化时,拱顶离水面的高度怎样变化.你能想出办法来吗?4.9m4m2m1、请你依据题意把数据标在图上。2、请你建立适当的直角坐标系,并标出抛物线上点的坐标。3、请你选择其中一种建立方式,求出函数解析式。4、如何解决问题?分析:根据题意,要求CD宽,只要求出ED的长度.在图示的直角坐标系中,即只要求出点D的横坐标.又因为点D在桥洞所成的抛物线上,故应先求出抛物线所对应的函数关系式。CDABE建立函数模型这是什么样的函数呢?拱桥的纵截面是抛物线应当是某个二次函数的图象你能想出办法来吗?我们来比较一下(0,0)(4,0)(2,2)(-2,-2)(2,-2)(0,0)(-2,0)(2,0)(0,2)(-4,0)(0,0)(-2,2)谁最合适yyyyooooxxxx怎样建立直角坐标系比较简单呢?以拱顶为原点,抛物线的对称轴为y轴,建立直角坐标系,如图.从图看出,什么形式的二次函数,它的图象是这条抛物线呢?由于顶点坐标系是(0.0),因此这个二次函数的形式为2yax-2-421-2-1A-2-421-2-1A如何确定a是多少?已知水面宽4米时,拱顶离水面高2米,因此点A(2,-2)在抛物线上由此得出222ag12a解得因此,其中|x|是水面宽度的一半,y是拱顶离水面高度的相反数,这样我们可以了解到水面宽变化时,拱顶离水面高度怎样变化.212yx由于拱桥的跨度为4.9米,因此自变量x的取值范围是:水面宽3m时从而因此拱顶离水面高1.125m32x21391.125228y你是否体会到:从实际问题建立起函数模型,对于解决问题是有效的?2.452.45x现在你能求出水面宽3米时,拱顶离水面高多少米吗?例1.如图,一位运动员在距篮下4m处起跳投篮,球运行的路线是抛物线,当球运行的水平距离是2.5m时,球达到最大高度3.5m,已知篮筐中心到地面的距离3.05m,问球出手时离地面多高时才能中?球的出手点A的横坐标为-2.5,将x=-2.5代入抛物线表达式得y=2.25,即当出手高度为2.25m时,才能投中。xy2.5m4m3.05ABCO3.5解:建立如图所示的直角坐标系,则球的最高点和球篮的坐标分别为B(0,3.5),C(1.5,3.05).3.5=c3.05=1.52a+c设所求的二次函数的表达式为y=ax2+c.将点B和点C的坐标代入,得解得a=-02c=3.5∴该抛物线的表达式为y=-0.2x2+3.51.如图,一单杠高2.2米,两立柱之间的距离为1.6米,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状。一身高0.7米的小孩站在离立柱0.4米处,其头部刚好触上绳子,求绳子最低点到地面的距离。ABCD0.71.62.20.4EFOxy随堂练习ABCD0.71.62.20.4EF解:如图,所以,绳子最低点到地面的距离为0.2米.Oxy以CD所在的直线为X轴,CD的中垂线为Y轴建立直角坐标系,则B(0.8,2.2),F(-0.4,0.7)设y=ax2+k,从而有0.64a+k=2.20.16a+k=0.7解得:a=K=0.2258所以,y=x2+0.2顶点E(0,0.2)2582.如图是某公园一圆形喷水池,水流在各方向沿形状相同的抛物线落下,如果喷头所在处A(0,1.25),水流路线最高处B(1,2.25),则该抛物线的解析式为____________如果不考虑其他因素,那么水池的半径至少要____米,才能使喷出的水流不致落到池外。YA(0,1.25)OxB(1,2.25).y=-(x-1)2+2.252.5抽象转化数学问题运用数学知识问题的解决解题步骤:1.分析题意,把实际问题转化为数学问题,画出图形.2.根据已知条件建立适当的平面直角坐标系.3.选用适当的解析式求解.4.根据二次函数的解析式解决具体的实际问题.实际问题