27.2.1相似三角形的判定第4课时1.理解定理“如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似”.2.能灵活地选择定理判定三角形相似.这两个三角形的三个内角的大小有什么关系?三个内角对应相等的两个三角形一定相似吗?三个内角对应相等.观察你与老师的直角三角尺,相似吗?画两个三角形,使三个角分别为60°,45°,75°.①分别量出两个三角形三边的长度;②这两个三角形相似吗?即:如果一个三角形的三个角分别与另一个三角形的三个角对应相等,那么这两个三角形_______.相似一定需三个角对应相等吗?相似三角形的判别方法:如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.如果两个三角形仅有一组角是对应相等的,那么它们是否一定相似?CAA'BB'C'∵∠A=∠A',∠B=∠B'∴ΔABC∽ΔA'B'C'用数学符号表示:相似三角形的判别(两个角分别对应相等的两个三角形相似.)【例1】弦AB和CD相交于⊙O内一点P,求证:PA·PB=PC·PD.ABCDPO证明:连接AC、DB∵∠A和∠D都是所对的圆周角,∴∠A=∠D.同理∠C=∠B.∴△PAC∽△PDB.PAPC.PDPB即PA·PB=PC·PD.CB【例题】【例2】如图所示,在两个直角三角形△ABC和△A′B′C′中,∠B=∠B′=90°,∠A=∠A′,判断这两个三角形是否相似.C'B'A'CBA解析:∵∠B=∠B′=90°(已知),∠A=∠A′(已知),∴△ABC∽△A′B′C′(两个角分别对应相等的两个三角形相似.)ABCED在△ABC中,D、E分别是BA、CA延长线上的点,且DE∥BC,试说明△ABC与△ADE相似.【解析】∵DE∥BC(已知)∴∠AED=∠C(两直线平行,内错角相等),∵∠EAD=∠CAB.(对顶角相等)∴△ADE∽△ABC.(两组对应角分别相等的两个三角形相似.)【跟踪训练】ABCDEABCDEOCBADOCDABABCDE常见的相似图形ABDC图11.填一填(1)如图1,点D在AB上,当∠=∠时,△ACD∽△ABC.(2)如图2,已知:点E在AC上,若点D在AB上,则满足条件,就可以使△ADE与原△ABC相似.ABCE图2ACDB(或者∠ACB=∠ADC)DE‖BCD(或者∠C=∠AED)(或者∠B=∠ADE)2.如图,在□ABCD中,EF∥AB,DE:EA=2:3,EF=4,求CD的长.解析:∵DE:EA=2:3∴DE:DA=2:5∵EF∥AB∴△DEF∽△DAB∴DE:DA=EF:AB即2:5=4:AB∴AB=10即CD=103.如图,△ABC中,DE∥BC,EF∥AB,试说明△ADE∽△EFC.AEFBCD解析:∵DE∥BC,EF∥AB(已知),∴∠ADE=∠B=∠EFC(两直线平行同位角相等)∠AED=∠C.(两直线平行同位角相等)∴△ADE∽△EFC.(两个角分别对应相等的两个三角形相似.)解析:∵∠A=∠A,∠ABD=∠C∴△ABD∽△ACB∴AB:AC=AD:AB∴AB2=AD·AC∵AD=2,AC=8∴AB=4.4.已知如图,∠ABD=∠C,AD=2,AC=8,求AB.ABCD解析:(1)△ABC与△FOA相似.因为直线l垂直平分线段AC,所以∠AFO=∠CFO=∠BAC,又∠AOF=∠ABC=90°,所以△ABC与△FOA相似.(2)四边形AFCE是菱形,△AOE≌△COF,所以AE=CF,又AE=CE,AF=CF,所以,AE=CE=AF=CF,所以四边形AFCE是菱形.5.(泰州·中考)如图,四边形ABCD是矩形,直线l垂直平分线段AC,垂足为O,直线l分别与线段AD、CB的延长线交于点E、F,连接AF,CE.(1)△ABC与△FOA相似吗?为什么?(2)试判定四边形AFCE的形状,并说明理由.l(第24题图)EFOCDAB相似三角形的判别方法有那些?方法1:通过定义方法5:通过两角对应相等.三个角对应相等三组对应边的比相等方法3:平行于三角形一边的直线.方法4:两组对应边的比相等且相应的夹角相等.方法2:三组对应边的比相等.只要持续地努力,不懈地奋斗,就没有征服不了的东西.——塞内加